Confocal Microscopy of Living Cells

  • M. Terasaki
  • M. E. Dailey


If a picture is worth a thousand words, a movie may be worth a million words. Microcinematography and, later, video microscopy have provided great insight into biological phenomena. One limitation, however, has been the difficulty of imaging in three dimensions. In many cases, observations have been made on cultured cells that are thin to start with or tissue preparations that have been sectioned.


Confocal Microscopy Tissue Slice Spherical Aberration Microscope Stage Calcium Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainger, K., Avossa, D., Morgan, F., Hill, S.J., Barry, C., Barbarese, E., and Carson, J.H., 1993, Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes, J. Cell Biol. 123:431–441.PubMedCrossRefGoogle Scholar
  2. Andrews, P.M., Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1991, Tandem scanning confocal microscopy (TSCM) of normal and ischemic living kidneys, Am.J.Anat. 191:95–102.PubMedCrossRefGoogle Scholar
  3. Baker, G.E., and Reese, B.E., 1993, Using confocal laser scanning microscopy to investigate the organization and development of neuronal projections labeled with Dil, Methods Cell Biol 38:325–344.PubMedCrossRefGoogle Scholar
  4. Barber, R.P., Phelps, P.E., and Vaughn, J.E., 1993, Preganglionic autonomic motor neurons display normal translocation patterns in slice cultures of embryonic rat spinal cord, J. Neurosci. 13:4898–4907.PubMedGoogle Scholar
  5. Bassnett, S., 1992, Mitochondrial dynamics in differentiating fiber cells of the mammalian lens, Curr. Eye Res. 11:1227–1232.PubMedCrossRefGoogle Scholar
  6. Bassnett, S., and Beebe, D.C., 1992, Coincident loss of mitochondria and nuclei during lens fiber cell differentiation, Dev. Dyn. 194:85–93.PubMedCrossRefGoogle Scholar
  7. Bassnett, S., Kuszak, J.R., Reinisch, L., Brown, H.G., and Beebe, D., 1994, Intercellular communication between epithelial and fiber cells of the eye lens, J. Cell Sci. 107:799–811.PubMedGoogle Scholar
  8. Baumann, O., Kitazawa, T., and Somlyo, A.P., 1990, Laser confocal scanning microscopy of the surface membrane/t-tubular system and the sarcoplasmic reticulum in insect striated muscle stained with DilCj g(3), J. Struct. Biol. 105:154–161.PubMedCrossRefGoogle Scholar
  9. Betz, W.J., Mao, F., and Bewick, G.S., 1992, Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals, J. Neurosci. 12:363–315.PubMedGoogle Scholar
  10. Carette, M.J., and Ferguson, M.W., 1992, The fate of medial edge epithelial cells during palatal fusion in vitro: An analysis by Dil labelling and confocal microscopy, Development 114:379–388.PubMedGoogle Scholar
  11. Chacon, E., Reece, J.M., Nieminen, A.-L. Zahrebelski, G., Herman, B., and Lemasters, J.J., 1994, Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: A multiparameter digitized confocal microscopic study, Biophys. J. 66:942–952.PubMedCrossRefGoogle Scholar
  12. Cleary, A.L., Gunning, B.E.S., Wateneys, G.O., and Hepler, P.K., 1992, Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells, J. Cell Sci. 103:977–988.Google Scholar
  13. Cooper, M.S., Cornell-Bell, A.H., Chernjavsky, A., Dani, J.W., and Smith, S.J., 1990, Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum, Cell 61:135–145.PubMedCrossRefGoogle Scholar
  14. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J., 1990, Glutamate induces calcium waves in cultured astrocytes: Long-range glial signaling, Science 241:410–413.Google Scholar
  15. Cornell-Bell, A.H., Otake, L.R., Sadler, K., Thomas, P.G., Lawrence, S., Olsen, K., Gumkowski, F., Peterson, J.R., and Jamieson, J.D., 1993, Membrane glycolipid trafficking in living, polarized pancreatic acinar cells: Assessment by confocal microscopy, Methods Cell Biol. 38:221–40PubMedCrossRefGoogle Scholar
  16. Dailey, M.E., and Smith, S.J., 1993, Confocal imaging of mossy fiber growth in live hippocampal slices, Jpn. J. Physiol. 43:S183–S192.Google Scholar
  17. Dailey, M.E., and Smith, S.J., 1994, Spontaneous Ca2+ transients in developing hippocampal pyramidal cells, J. Neurobiol. 25(3):243–251.PubMedCrossRefGoogle Scholar
  18. Dailey, M.E., Buchanan, J., Bergles, D.E., and Smith, S.J., 1994, Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro, J. Neurosci. 14:1060–1078.PubMedGoogle Scholar
  19. Dani, J.W., Chemjavsky, A., and Smith, S.J., 1992, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron 8:429–440.PubMedCrossRefGoogle Scholar
  20. Davies, P.F., Robotewskyj, A., and Griem, M.L., 1993, Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis, J. Clin. Invest. 91:2640–2652.PubMedCrossRefGoogle Scholar
  21. Delbridge, L.M., Harris, P.J., Pringle, J.T., Dally, L.J., and Morgan, T.O., 1990, A superfusion bath for single-cell recording with high-precision optical depth control, temperature regulation, and rapid solution switching, Pfluegers Arch. 416:94–97.CrossRefGoogle Scholar
  22. Dirnagl, U., Villringer, A., and Einhaupl, K.M., 1992, In vivo confocal scanning laser microscopy of the cerebral microcirculation, J. Microsc. 165:147–157.PubMedCrossRefGoogle Scholar
  23. Dunwiddie, T.V., 1981, Age-related differences in the in vitro rat hippocampus: Development of inhibition and the effects of hypoxia, Dev. Neurosci. 4:165–175.PubMedCrossRefGoogle Scholar
  24. Dvorak, J.A., and Stoiler, W.F., 1971, A controlled-environment culture system for high resolution light microscopy, Exp. Cell Res. 68:269–275.CrossRefGoogle Scholar
  25. Farkas, D.L., Wei, M.-D., Febbroriello, P., Carson, J.H., and Loew, L.M., 1989, Simultaneous imaging of cell and mitochondrial membrane potentials, Biophys. J. 56:1053–1069.PubMedCrossRefGoogle Scholar
  26. Feng, J.J., Carson, J.H., Morgan, F., Walz, B., and Fein, A., 1994, Three dimensional organization of endoplasmic reticulum in the ventral photoreceptors of Limulus, J. Comp. Neurol. 341:172–183.PubMedCrossRefGoogle Scholar
  27. Firestone, L., Cook, K., Culp, K., Talsania, N., and Preston, K. Jr., 1991, Comparison of autofocus methods for automated microscopy, Cytometry 12(3): 195–206.PubMedCrossRefGoogle Scholar
  28. Flucher, B.E., Takekura, H., and Franzini-Armstrong, C., 1993, Development of the excitation-contraction coupling apparatus in skeletal muscle: Association of sarcoplasmic reticulum and transverse tubules with myofibrils, Dev. Biol. 160:135–147.PubMedCrossRefGoogle Scholar
  29. Forsythe, I.W., 1991, Microincubator for regulating temperature and superfusion of tissue-cultured neurons during electrophysiological or optical studies, Methods Neurosci. 4:301–318.Google Scholar
  30. Gähwiler, B.H., 1984, Development of the hippocampus in vitro: Cell types, synapses, and receptors, Neuroscience 11:751–760.PubMedCrossRefGoogle Scholar
  31. Gähwiler, B.H., Thompson, S.M., Audinat, E., and Robertson, R.T., 1991, Organotypic slice cultures of neural tissue. In: Culturing Nerve Cells (G. Banker and K. Goslin, eds.), MIT Press, Cambridge, Massachusetts, pp. 379–411.Google Scholar
  32. Gillot, I., and Whitaker, M., 1993, Imaging calcium waves in eggs and embryos, J. Exp. Biol. 184:213–219.Google Scholar
  33. Girard, S., and Clapham, D., 1993, Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx, Science 260:229–232.PubMedCrossRefGoogle Scholar
  34. Hernandez-Cruz, A., Sala, F., and Adams, P.R., 1990. Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron, Science 247:858–862.PubMedCrossRefGoogle Scholar
  35. Honig, M.G., and Hume, R.I., 1986, Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures, J. Cell Biol. 103:171–187.PubMedCrossRefGoogle Scholar
  36. Hosokawa, T., Bliss, T.V.P., and Fine, A., 1992, Persistence of individual dendritic spines in living brain slices, NeuroReport 3:477–480.Google Scholar
  37. Houliston, E., Carre, D., Johnston, J.A., and Sardet, C., 1993, Axis establishment and microtubule mediated waves prior to first cleavage in Beroe ovata, Development 117:75–87.PubMedGoogle Scholar
  38. Hush, J.M., Wadsworth, P., Callaham, D.A., and Hepler, P.K., 1994, Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching, J. Cell Sci. 10:775–784.Google Scholar
  39. Ince, C., Ypey, D.L., Diesselhoff-den Dulk, M.M.C., Visser, J. A.M., DeVos, A., and Van Furth, R., 1983, A Micro-CO2-incubator for use on a microscope. J. Immun. Meth. 60:269–275CrossRefGoogle Scholar
  40. Jaffe, L.A., and Terasaki, M., 1993, Structural changes of the endoplasmic reticulum of sea urchin eggs during fertilization, Dev. Biol. 156:556–573.CrossRefGoogle Scholar
  41. Jaffe, L.A., and Terasaki, M., 1994, Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization, Dev. Biol. 164:579–587.PubMedCrossRefGoogle Scholar
  42. Jahromi, B.S., Robitaille, R., and Charlton, M.P., 1992, Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ, Neuron 8:1069–1077.PubMedCrossRefGoogle Scholar
  43. Jester, J.V., Andrews, P.M., Petroll, W.M., Lemp, M.A., and Cavanagh, H.D., 1991, In vivo, real-time confocal imaging, J. Electron Microsc. Tech. 18:50–60.PubMedCrossRefGoogle Scholar
  44. Jester, J.V., Petroll, W.M., Garana, R.M.R., Lemp, M.A., and Cavanagh, H.D., 1992, Comparison of in vivo and ex vivo cellular structure in rabbit eyes by tandem scanning microscopy, J. Microsc. 165:169–181.PubMedCrossRefGoogle Scholar
  45. Johnson, L.V., Walsh, M.L., and Chen, L.B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.PubMedCrossRefGoogle Scholar
  46. Kiehart, D.P., 1982, Microinjection of echinoderm eggs: Apparatus and procedures, Methods Cell Biol. 25:13–31.PubMedCrossRefGoogle Scholar
  47. Kim, W.T., Rioult, M.G., and Cornell-Bell, A.H., 1994, Glutamate-induced calcium signaling in astrocytes, Glia 11:173–184.PubMedCrossRefGoogle Scholar
  48. Knebel, W., Quader, H., and Schnepf, E., 1990, Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short and long-term observations with a confocal laser scanning microscope, Eur. J. Cell Biol. 52:328–340.PubMedGoogle Scholar
  49. Koning, A.J., Lum, P.Y., Williams, J.M., and Wright, R., 1993, DiOC6 staining reveals organelle structure and dynamics in living yeast cells, Cell Motil. Cytoskel. 25:111–128CrossRefGoogle Scholar
  50. Lechleiter, J., Girard, S., Peralta, E., and Clapham, D., 1991, Spiral calcium wave propagation and annihilation in X. laevis oocytes, Science 252:123–126.PubMedCrossRefGoogle Scholar
  51. Lev-Ram, V., and Ellisman, M.H., 1994, Axonal activation-induced calcium transients in myelinating Schwann cells: Sources and mechanisms, J. Neurosci., in press.Google Scholar
  52. Lipp, P., and Niggli, E., 1993a, Ratiometric confocal Cadmeasurements with visible wavelength indicators in isolated cardiac myocytes, Cell Calcium 14:359–372.PubMedCrossRefGoogle Scholar
  53. Lipp, P., and Niggli, E., 1993b, Microscopic spiral waves reveal positive feedback in subcellular calcium signaling, Biophys. J. 65:2272–2276.PubMedCrossRefGoogle Scholar
  54. Lipp, P., and Niggli, E., 1994a, Modulation of Ca2+ releases in cultured neonatal rat cardiac myocytes: Insight from subcellular release patterns revealed by confocal microscopy, Circ. Res. 74:979–990.PubMedCrossRefGoogle Scholar
  55. Lipp, P., and Niggli, E., 1994b, Sodium current induced calcium signals in isolated guinea-pig ventricular myocytes, J. Physiol. 474:439–446.PubMedGoogle Scholar
  56. Loew, L.M., 1993, Confocal microscopy of Potentiometric fluorescent dyes, Methods Cell Biol. 38:195–209.PubMedCrossRefGoogle Scholar
  57. Lorenzl, S., Koedel, U., Dirnagl, U., Ruckdeschel, G., and Pfister, H.W., 1993, Imaging of leukocyte-endothelium interaction using in vivo confocal laser scanning microscopy during the early phase of experimental pneumococcal meningitis, J. Infect. Dis. 168:927–933.PubMedCrossRefGoogle Scholar
  58. McCauley, M.M., and Hepler, P.K., 1990, Visualization of the endoplasmic reticulum in living buds and branches of the moss Funaria hygrometrica by confocal laser scanning microscopy, Development 109:753–764.Google Scholar
  59. McKenna, N., and Wang, Y.L., 1986, Culturing cells on the microscope stage, Methods Cell Biol. 29:195–205.CrossRefGoogle Scholar
  60. Masters, B.R., 1992, Confocal microscopy of the in-situ crystalline lens, J. Microsc. 165:159–67PubMedCrossRefGoogle Scholar
  61. Merchant, F.A., Aggarwal, S.J., Diller, K.R., Bartels, K.A., and Bovik, A.C., 1993a, Analysis of volumetric changes in rat pancreatic islets under osmotic stress using laser scanning confocal microscopy, Biomed. Sci. Instrum. 29:111–119.PubMedGoogle Scholar
  62. Merchant, F.A., Aggarwal, S.J., Diller, K.R., Bartels, K.A., and Bovik, A.C., 1993b, Three-dimensional distribution of damaged cells in cryopreserved pancreatic islets as determined by laser scanning confocal microscopy, J. Microsc. 169:329–338.PubMedCrossRefGoogle Scholar
  63. Minta, A., Kao, J., and Tsien, R., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem. 264:8171–8178.PubMedGoogle Scholar
  64. Myrdal, S., and Foster, M., 1994, Time-resolved confocal analysis of antibody penetration into living, solid tumor spheroids, Scanning 16:155–167.PubMedGoogle Scholar
  65. Niggli, E., and Lederer, W.J., 1990, Real-time confocal microscopy and calcium measurements in heart muscle cells: Towards the development of a fluorescence microscope with high temporal and spatial resolution, Cell Calcium 11:121–130.PubMedCrossRefGoogle Scholar
  66. O’Rourke, N.A., and Fraser, S.E., 1990, Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: An in vivo confocal microscopic study, Neuron5:159–171.PubMedCrossRefGoogle Scholar
  67. O’Rourke, N.A., Dailey, M.E., Smith, S.J., and McConnell, S.K., 1992, Diverse migratory pathways in the developing cerebral cortex, Science 258:299–302.PubMedCrossRefGoogle Scholar
  68. O’Rourke, N.A., Cline, H.T., and Fraser, S.E., 1994, Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission, Neuron 12:921–934.PubMedCrossRefGoogle Scholar
  69. Pagano, R.E., Martin, O.C., Kang, H.C., and Haugland, R.P., 1991, A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: Accumulation at the Golgi apparatus results in altered spectral properties of the sphingoid precursor, J. Cell Biol. 113:1267–1279.PubMedCrossRefGoogle Scholar
  70. Petráň, M., Hadravsky, M., Benes, J., and Boyde, A., 1986, In vivo microscopy using the tandem scanning microscope, Ann. NY. Acad. Sci. 483:440–447.PubMedCrossRefGoogle Scholar
  71. Petroll, W.M., Cavanagh, H.D., Lemp, M.A., Andrews, P.M., and Jester, J.V., 1992, Digital image acquisition in in vivo confocal microscopy, J. Microsc. 165:61–69.PubMedCrossRefGoogle Scholar
  72. Petroll, W.M., Cavanagh, H.D., and Jester, J.V., 1993, Three-dimensional imaging of corneal cells using in vivo confocal microscopy, J. Microsc. 170:213–219.CrossRefGoogle Scholar
  73. Poole, C.A., Brookes, N.H., and Clover, G.M., 1993, Keratocyte networks visualized in the living cornea using vital dyes, J. Cell Sci. 106:685–692.PubMedGoogle Scholar
  74. Ralston, E., 1993, Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis, J. Cell Biol. 120:399–409.PubMedCrossRefGoogle Scholar
  75. Reist, N.E., and Smith, S. J., 1992, Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction, Proc. Natl. Acad. Sci. USA 89:7625–7629.PubMedCrossRefGoogle Scholar
  76. Ryan, T.A., Reuter, H., Wendland, B., Schweizer, F.E., Tsien, R.W., and Smith, S. J., 1993, The kinetics of synaptic vesicle recycling measured at single presynaptic boutons, Neuron 11:713–724.PubMedCrossRefGoogle Scholar
  77. Savage, R.M., and Danilchik, M.V., 1993, Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos, Dev. Biol. 157:371–381.PubMedCrossRefGoogle Scholar
  78. Serras, F., Fraser, S., and Chuong, C.M., 1993, Asymmetric patterns of gap junctional communication in developing chicken skin, Development 119:85–96.PubMedGoogle Scholar
  79. Shen, S.S., and Buck, W.R., 1993, Sources of calcium in sea urchin eggs during the fertilization response, Dev. Biol. 157:157–169.PubMedCrossRefGoogle Scholar
  80. Smith, C.L., 1994, Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro, J. Neurosci. 14:384–398.Google Scholar
  81. Smith, S. J., Cooper, M., and Waxman, A., 1990, Laser microscopy of subcellular structure in living neocortex: Can one see dendritic spines twitch? In: XXIII Symposia Medica Hoechst, Biology of Memory (L. Squire and E. Lindenlaub, eds.), Schattauer, Stuttgart, pp. 49–71.Google Scholar
  82. Speksnijder, J.E., Terasaki, M., Hage, W.J., Jaffe, L.F., and Sardet, C., 1993, Polarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the ascidian egg, J. Cell Biol. 120:1337–1346.PubMedCrossRefGoogle Scholar
  83. Strange, K., and Spring, K.R., 1986, Methods for imaging renal tubule cells, Kidney Int. 30:192–200.PubMedCrossRefGoogle Scholar
  84. Stricker, S.A., Centonze, V.E., Paddock, S.W., and Schatten, G., 1992, Confocal microscopy of fertilization-induced calcium dynamics in sea urchin eggs, Dev. Biol. 149:370–380.PubMedCrossRefGoogle Scholar
  85. Sullivan, W., Daily, D.R., Fogarty, P., Yook, K.J., and Pimpinelli, S., 1993, Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo, Mol. Biol. Cell 4:885–896.PubMedGoogle Scholar
  86. Summers, R.G., Stricker, S.A., and Cameron, R.A., 1993, Applications of confocal microscopy to studies of sea urchin embryogenesis, Methods Cell Biol. 38:265–287PubMedCrossRefGoogle Scholar
  87. Terasaki, M., 1994, Redistribution of cytoplasmic components during germinal vesicle breakdown in starfish oocytes, J. Cell Sci. 107:1797–1805.PubMedGoogle Scholar
  88. Terasaki, M., and Jaffe, L.A., 1991, Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization, J. Cell Biol. 114:929–940.PubMedCrossRefGoogle Scholar
  89. Terasaki, M., and Jaffe, L.A., 1993, Imaging of the endoplasmic reticulum in living marine eggs, Methods Cell Biol. 38:211–220.PubMedCrossRefGoogle Scholar
  90. Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B., 1984, Localization of endoplasmic reticulum in living and glutaraldehyde fixed cells with fluorescent dyes, Cell 38:101–108.PubMedCrossRefGoogle Scholar
  91. Terasaki, M., Slater, N.T., Fein, A., Schmidek, A., and Reese, T.S., 1994, A continuous cellular network of endoplasmic reticulum in cerebellar Purkinje neurons, Proc. Natl. Acad. Sci. USA 91:7510–7514.PubMedCrossRefGoogle Scholar
  92. van den Pol, A.N., Finkbeiner, S.M., and Cornell-Bell, A.H., 1992, Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro, J. Neurosci. 12:2648–2664.PubMedGoogle Scholar
  93. van den Pol, A.N., Kogleman, L., Ghosh, P., Lillelund, P., and Blackstone C., 1994, Developmental regulation of the hypothalamic metabotropic glutamate receptor mGluRl, J. Neurosci. 14(6):3816–3834.PubMedGoogle Scholar
  94. Vesely, P., Maly, J., Cumpelik, J., Pluta, M., and Tuma V., 1982, Improved spatial and temporal resolution in an apparatus for time-lapse, phase contrast ciné light micrography of cells in vitro, J. Microsc. 125:67–76.CrossRefGoogle Scholar
  95. Walcerz, D.B., and Diller, K.R., 1991, Quantitative light microscopy of combined perfusion and freezing processes, J. Microsc. 161(2):297–311, and U.S. patent 5,257,128.PubMedCrossRefGoogle Scholar
  96. Wasteneys, G.O., Gunning, B.E.S., and Hepler, P.K., 1993, Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells, Cell Motil. Cytoskel. 24:205–213.CrossRefGoogle Scholar
  97. Waterman-Storer, C.M., Sanger, J.W., and Sanger, J.M., 1993, Dynamics of organelles in the mitotic spindles of living cells: Membrane and microtubule interactions, Cell Motil. Cytoskel. 26:19–39.CrossRefGoogle Scholar
  98. Williams, D.A., Cody, S.H., Gehring, C.A., Parish, R.W., and Harris, P.J., 1990, Confocal imaging of ionised calcium in living plant cells, Cell Calcium 11:291–297.PubMedCrossRefGoogle Scholar
  99. Williams, D.A., Delbridge, L.M., Cody, S.H., Harris, P.J., and Morgan, T.O., 1992, Spontaneous and propagated calcium release in isolated cardiac myocytes viewed by confocal microscopy, Am. J. Physiol. 262:C731–C742.Google Scholar
  100. Wright, B.D., Terasaki, M., and Scholey, J.M., 1993a, Roles of kinesin and kinesin-like proteins in sea urchin embryonic cell division: Evaluation using antibody microinjection, J. Cell Biol. 123:681–689.PubMedCrossRefGoogle Scholar
  101. Wright, S.J., Centonze, V.E., Stricker, S.A., DeVries, P.J., Paddock, S.W., and Schatten, G., 1993b, Introduction to confocal microscopy and three-dimensional reconstruction, Methods Cell Biol. 38:1–45.PubMedCrossRefGoogle Scholar
  102. Yuste, R., andKatz, L.C., 1991, Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters, Neuron 6:333–344.PubMedCrossRefGoogle Scholar
  103. Zhang, D.H., Wadsworth, P., and Hepler, P.K., 1990, Microtubule dynamics in living dividing plant cells: Confocal imaging of microinjected fluorescent brain tubulin, Proc. Natl. Acad. Sci. USA 87:8820–8824.PubMedCrossRefGoogle Scholar
  104. Zhang, D.H., Wadsworth, P., and Hepler, P.K., 1992, Modulation of anaphase spindle microtubule structure in stamen hair cells of Tradescantia by calcium and related agents, J. Cell Sci. 102:79–89.Google Scholar
  105. Zhang, D.H., Wadsworth, P., and Hepler, P.K., 1993, Dynamics of microfilaments are similar, but distinct from microtubules during cytokinesis in living, dividing plant cells, Cell Motil. Cytoskel. 24:151–155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Terasaki
    • 1
  • M. E. Dailey
    • 2
  1. 1.Laboratory of NeurobiologyNINDS, NIHBethesdaUSA
  2. 2.Department of Molecular and Cellular Physiology, Beckman CenterStanford University Medical SchoolStanfordUSA

Personalised recommendations