Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy

  • Robert Bacallao
  • Kianush Kiai
  • Lynn Jesaitis


Traditionally, biologists have been confined to transmission electron microscopy (TEM) and light microscopy (LM) in order to correlate biochemical and molecular data with morphology. Electron microscopy (EM) provides fine ultrastructural detail but is limited to the study of cellular structures that react with electron-dense stains deposited in fixed specimens. Immunogold labeling permits the study of non-electron-dense material, but EM sections must still be very thin to avoid problems with the penetration of the labeled antibodies and to reduce scattering of the electron beam.


MDCK Cell Mitotic Spindle Stereo Image Confocal Fluorescence Microscopy Cell Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, E., 1884, Flatland: A Romance of Many Dimensions, 2nd ed., Dover, London.Google Scholar
  2. Abdella, P.M., Smith, P.K., and Royer, G.P., 1979, A new cleavable reagent for crosslinking and reversible immobilization of proteins, Biochem. Bio-phys. Res. Comm. 87:734–42.CrossRefGoogle Scholar
  3. Bacallao, R. and Garfinkel, A., 1994, Volume reconstruction of confocal microscope images: Practical considerations, in press.Google Scholar
  4. Bacallao, R., and Stelzer, E.H.K., 1989, Preservation of biological specimens for observation in a confocal fluorescence microscope, operational principles of confocal fluorescence microscopy, Methods Cell Biol. 31:437 – 452.PubMedCrossRefGoogle Scholar
  5. Bacallao, R., Dotti, C., Antony, C., Stelzer, E.H.K., Karsenti, E., and Simons, K., 1989, Subcellular organization of MDCK cells during the formation of a polarized epithelium, J. Cell Biol. 109:2817–2832.PubMedCrossRefGoogle Scholar
  6. Barrnett, R.J., Perney, D.P., and Hagstrom, P.E., 1964, Additional new aldehyde fixatives for histochemistry and electron microscopy. J. Histochem. Cytochem. 12:36.Google Scholar
  7. Bastholm, L., Scopsi, L., and Nielsen, M.H., 1986, Silver-enhanced immunogold staining of semithin and ultrathin cryosections, J. Electron Microsc. Technique 4:175–176.CrossRefGoogle Scholar
  8. Benhamou, N., Noel, S., Grenier, J., and Asselin, A., 1991, Microwave energy fixation of plant tissue: An alternative approach that provides excellent preservation of ultrastructure and antigenicity, J. Electron Microsc. Technique 17: 81–94.CrossRefGoogle Scholar
  9. Berod, A., Hartman, B.K., and Pujol, J.F., 1981, Importance of fixation in immunohistochemistry, J. Histochem. Cytochem. 29: 844–50.PubMedCrossRefGoogle Scholar
  10. Berthoud, H.-R., Jedrezejewska, A., and Powley, T.L., 1990, Simultaneous labeling of vagal innervation of the gut and afferent projections from the bisceral forebrain with dil injected into the dorsal vagal complex in the rat, J. Comp. Neurol. 301:65–79.PubMedCrossRefGoogle Scholar
  11. Birrell, G.B., and Hedbert, K.K., 1987, Immunogold labeling with small gold particles: Silver enhancement provides increased detectability at low magnifications, J. Electron Microsc. Technique 5:219–220.CrossRefGoogle Scholar
  12. Blanchette-Mackie, E.J., and Scow, R.O., 1981, Lipolysis and lamellar structures in white adipose tissue of young rats: Lipid movement in membranes, J. Ultrastruct. Res. 77:295–318.PubMedCrossRefGoogle Scholar
  13. Bock, G., Hilchenbach, M., Schauenstein, K., and Wick, G., 1985, Photometric analysis of anti-fading reagents for immunofluorescence with laser and conventional illumination sources, J. Histochem. Cytochem. 33:699–705.PubMedCrossRefGoogle Scholar
  14. Bomsel, M., Prydz, K., Parton, R.G., Gruenberg, J., and Simons, K., 1989, Functional and topological organization of apical and basolateral endo-cytic pathways in MDCK cells, J. Cell Biol. 109:3243–3258.PubMedCrossRefGoogle Scholar
  15. Bowers, B., and Maser, M., 1988, Artifacts in fixation for transmission electron-microscopy. In: Artifacts in Biological Electron Microscopy (R.F.E. Crang and K.L. Klomparns, eds.), Plenum Press, New York, pp. 13–41.Google Scholar
  16. Boyde, A., and Maconnachie, E., 1979, Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy, Scanning 2:149–163.CrossRefGoogle Scholar
  17. Boyde, A., and Maconnachie, E., 1981, Morphological correlations with dimensional change during SEM specimen preparation, Scanning Electron Microsc. 4:278–34.Google Scholar
  18. Bradbury, S., and Meek, G.A., 1960, A study of potassium permanganate “fixation” for electron microscopy, Q. J. Microsc. Sci. 101:241–250.Google Scholar
  19. Brelje, T.C., and Sorenson, R.L., 1991, Role of prolactin versus growth hormone on islet B-cell proliferation in vitro: Implications for pregnancy, Endocrinology 128:45–57.PubMedCrossRefGoogle Scholar
  20. Brelje, T.C., Scharp, D.W., and Sorenson, R.L., 1989, Three-dimensional imaging of intact isolated islets of langerhans with confocal microscopy, Diabetes 38:808–14.PubMedCrossRefGoogle Scholar
  21. Cande, W.Z., Lazarides, E., and Mcintosh, J.R., 1977, Composition and distribution of actin and tubulin in mammalian mitotic spindle as seen by indirect immunofluorescence, J. Cell. Biol. 72:552–567.PubMedCrossRefGoogle Scholar
  22. Dabora, S.L., and Sheetz, M.P., 1988, The microtubule-dependent formation of tubulovesicular network with characteristics of the endoplasmic-reticulum from cultured cell extracts, Cell 54:27–35.PubMedCrossRefGoogle Scholar
  23. Danscher, G., Rytter Nergaard, J.O., and Baatrup, E., 1987, Autometallography-tissue metals demonstrated by a silver enhancement kit, Histochemistry 71:1–16.CrossRefGoogle Scholar
  24. Ellisman, M.H., Deerinck, T.J., Ouyang, Y., Beck, C.F., Tanksley, S.J., Walton, P.D., Airey, J.A., and Sutko, J.L., 1990, Identification and localization of ryanodine binding proteins in the avian central nervous system, Neuron 5:135–146.PubMedCrossRefGoogle Scholar
  25. Ericsson, J.L.E., and Biberfeld, P., 1967, Studies on aldehyde fixation. Fixation rates and their relation to fine structure and some histochemical reactions in the liver, Lab. Invest. 17:281–298.PubMedGoogle Scholar
  26. Fahimi, H.D., 1967, Perfusion and immersion fixation of rat liver with glutaral-dehyde, Lab. Invest. 16:736–750.PubMedGoogle Scholar
  27. Fan, J., Mansfield, S.G., Redmond, T., Gordon-Weeks, P.R., and Raper, J.A., 1993, The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor, J. Cell Biol. 121:867–878.PubMedCrossRefGoogle Scholar
  28. Fox, C.H., Johnson, F.B., Whiting, J., and Roller, P.P., 1985, Formaldehyde fixation, J. Histochem. Cytochem. 33:845–853.PubMedCrossRefGoogle Scholar
  29. Harrison, F.L., and Greer Wilson, T.J., 1992, The 14 kDaß-galactoside binding lectin in myoblast and myotube cultures: Localization by confocal microscopy, J. Cell Sci. 101:635–646.PubMedGoogle Scholar
  30. Hayat, M.A., 1981, Fixation for Electron Microscopy, Academic Press, San Diego.Google Scholar
  31. Hayat, M.A., 1986, Glutaraldehyde: Role in electron microscopy, Micron Microsc. Acta 17:115.CrossRefGoogle Scholar
  32. Hayat, M.A., 1989, Chemical Fixation in Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed., CRC Press, Boca Raton, Florida, pp. 1–74.Google Scholar
  33. Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy introduced by mismatches in refractive index, J. Microsc. 169:391–405.CrossRefGoogle Scholar
  34. Hiramoto, R., Berneck, J., Jurand, J., and Hamlin, M., 1964, The effect of hydrogen ion concentration on fluorescent labelled antibodies, J. Histochem. Cytochem. 12:271–274.PubMedCrossRefGoogle Scholar
  35. Holgate, C.S., Jackson, P., Cowen, P.N., and Bird, C.C., 1983, Immunogold-sil-ver staining: New method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem. 31:938–944.PubMedCrossRefGoogle Scholar
  36. Hopwood, D., 1967, Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into the liver, J. Anat. 101:83–92.PubMedGoogle Scholar
  37. Hopwood, D., 1975, The reactions of glutaraldehyde with nucleic acids, Histochem. J. 7:267–276.PubMedCrossRefGoogle Scholar
  38. Hunziker, W., Male, P., and Mellman, I., 1990, Differential microtubule requirements for transcytosis in MDCK cells, EMBOJ. 9:3515–3525.Google Scholar
  39. Huxlin, K.R., Sefton, A.J., and Furby, J.H., 1992, The origin and development of retinal astrocytes in the mouse, J. Neurocytol. 21:530–544.PubMedCrossRefGoogle Scholar
  40. Inoué, S., 1986, Video Microscopy, Plenum Press, New York.Google Scholar
  41. Ito, S., 1962, Light and electron microscopic study of membranous cytoplasmic organelles. In: The Interpretation of Ultrastructure (R.J.C. Harris, ed.), Academic Press, San Diego, pp. 129–148.Google Scholar
  42. Jackson, P., 1991, Microwave fixation in molecular biology, Eur. J. Morphol. 29: 57–59.PubMedGoogle Scholar
  43. James, P.S., Rossetti, C., Smith, M.W., and Cremaschi, D., 1992, Confocal microscopical analysis of epithelial cell heterogeneity in mouse Peyer’s patches, Histochem. J. 24:243–250.PubMedCrossRefGoogle Scholar
  44. Johnson, T.J.A., 1985, Glutaraldehyde fixation chemistry. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (M. Muller, R.P. Becker, A. Boyde, and J.J. Wolosewick, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 51–62.Google Scholar
  45. Jorgensen, A.O., Arnold, W., Shen, A., C-Y, Yuan, S., Gaver, M., and Campbell, K.P., 1990, Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in the rabbit skeletal muscle, J. Cell Biol. 110:1173–1185.PubMedCrossRefGoogle Scholar
  46. Karnovsky, M.J., 1965, A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy, J. Cell Biol. 27:137.Google Scholar
  47. Kett, P., Geiger, B., Ehemann, V., and Komitowski, D., 1992, Three-dimensional analysis of cell nucleus structures visualized by confocal scanning laser microscopy, J. Microsc. 167:169–179.PubMedCrossRefGoogle Scholar
  48. Klugerman, M.R., 1965, Chemical andphysical variables affectingthe properties of fluorescein isothiocyanate and its protein conjugates, J. Immunol. 95:1165–1173.PubMedGoogle Scholar
  49. Kubier, M.-D., Jordan, P.W., O’Neill, C.H., and Watt, F.M., 1991, Changes in the abundance and distribution of actin and associated proteins during terminal differentiation of human epidermal keratinocytes, J. Cell Sci. 100:153–165.Google Scholar
  50. Lackie, P.M., Hennessy, R.J., Hacker, G.W., and Polak, J.M., 1985, Investigation of immunogold-silver staining by electron microscopy, Histochemistry 83:545–550.PubMedCrossRefGoogle Scholar
  51. Langanger, G., De Mey, J., and Adam, H., 1983, l,4-Diazobizyklo-[2.2.2]oktan (DABCO) verzogest das Ausbleichen von immunofluoreszenzprapa-raten, Mikroskopie 40:237–241.PubMedGoogle Scholar
  52. Lee, C., and Chen, L.B., 1988, Dynamic behavior of endoplasmic-reticulum in living cells, Cell 54:37–46.PubMedCrossRefGoogle Scholar
  53. Lee, R.M.K., 1984, A critical appraisal of the effects of fixation, dehydration and embedding on cell volume. In: The Science of Biological Specimen Preservation for Microscopy and Microanalysis (J-P. Revel, T. Barnard, G.H. Haggis, and S.A. Bhatt, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 61–70.Google Scholar
  54. Lee, R.M.K., Garfield, R.E., Forrest, J.B., and Daniel, E.E., 1979, The effects of fixation, dehydration and critical point drying on the size of cultured smooth-muscle cells, Scanning Electron Microsc. 3:439–448.Google Scholar
  55. Lee, R.M.K., Garfield, R.E., Forrest, J.B., and Daniel, E.E., 1980, Dimensional changes of cultured smooth muscle cells due to preparatory processes for transmission electron-microscopy, J. Microsc. 120:85–91.PubMedCrossRefGoogle Scholar
  56. Lee, R.M.K., McKenzie, R., Kobayashi, K., Garfield, R.E, Forrest, J.B., and Daniel, E.E., 1982, Effects of glutaraldehyde fixative osmolalities on smooth-muscle cell-volume and osmotic reactivity of the cells after fixation, J. Microsc. 125:77–88.PubMedCrossRefGoogle Scholar
  57. Linares-Cruz, G., Rigaut, J.P., Vassy, J., De Oliveira, T.C., De Cremoux, P., Olofsson, B., and Calvo, F., 1994, Reflectance in situ hybridization (RISH): Detection, by confocal reflectance laser micrscopy, of gold-labelled riboprobes in breast cancer cell lines and hisotological specimens, J. Microsc. 173:27–38.PubMedCrossRefGoogle Scholar
  58. Lipsky, N., and Pagano, R.E., 1985, A vital stain for the Golgi apparatus, J. Cell Biol. 100:27–34.PubMedCrossRefGoogle Scholar
  59. Lynch, R.M., Fogarty, K.E., and Fay, F.S., 1991, Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy, J. Cell Biol. 112:385–395.PubMedCrossRefGoogle Scholar
  60. Masliah, E., Ge, N., Morey, M., DeTeresa, R., Terry, R.D., and Wiley, C.A., 1992, Cortical dendritic pathology in human immunodeficiency virus encephalitis, Lab. Invest. 66:285–291.PubMedGoogle Scholar
  61. McLean, I.W., andNakane, P.K., 1974, Periodate-lysine-formaldehyde fixative-anew fixative for immunoelectron microscopy, J. Histochem. Cytochem. 22:1077–1083.PubMedCrossRefGoogle Scholar
  62. Meek, K.M., and Chapman, J.A., 1985, Demonstrable fixative interactions. In: The Science of Biological Specimen Preparation for Microscopy and Microanalysis (M. Muller, R.P. Becker, A. Boyde, and J.J. Wolosewick, eds.), Scanning Electron Microscopy, AMF O’Hare, Chicago, pp. 63–72.Google Scholar
  63. Merdes, A., Stelzer, E.H.K., and De Mey, J., 1991, Three dimensional architecture of the mitotic spindle analyzed by confocal fluorescence and electron microscopy, J. Electron Microsc. Technique 18:61–73.CrossRefGoogle Scholar
  64. Nakane, P., 1975, Recent progress in peroxidase-labeled antibody method, Ann. N.Y. Acad. Sci. USA 254:203–210.CrossRefGoogle Scholar
  65. Nowell, J.A., and Pawley, J.B., 1980, Preparation of experimental animal tissue for SEM, Scanning Electron Microsc. 11:1–20.Google Scholar
  66. Nowell, J.A., Pawley, J.B., and Osborn, M., 1981. In: Techniques in Cellular Physiology, Part 1 (P.F. Baker, ed.), Elsevier-North-Holland, New York, pp. 1–28.Google Scholar
  67. Osborn, M., and Weber, K., 1982, Immunofluorescence and immunocytochemi-cal procedures with affinity purified antibodies: Tubulin-containing structures. Methods Cell Biol. 24:97–132.PubMedCrossRefGoogle Scholar
  68. Osborn, M., Franke, W., and Weber, K., 1980, Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems with the same cell by double immunofluorescence microscopy. Vimentin and cytoberatin fibers in cultured epithelial cells, Exp. Cell Res. 125:37–46.PubMedCrossRefGoogle Scholar
  69. Paddock, S.W., 1989, Tandem scanning reflected light microscopy of cell substratum adhesions and stress fibers in Swiss 3T3 cells, J. Cell Sci. 93:143–146.PubMedGoogle Scholar
  70. Pawley, J.B., Amos, W.B., Dixon, A., and Brelje, T.C., 1993, Simultaneous, non-interfering collection of optimal fluorescent and backscattered light signals on the MRC 500/600. In: Proceedings of the Fifty-first Annual Meeting of the Microscopy Society of America (G.W. Bailey and C.L. Rieder, eds.), San Francisco Press, San Francisco, pp. 156–157.Google Scholar
  71. Petersen, P., 1977, Glutaraldehyde fixation for electron microscopy of needle biopsies of human livers, Acta. Pathol. Microbiol. Scand. [A] 85:373–83.Google Scholar
  72. Raftery, L.A., Sanicola, M., Blackman, R.K., and Gelbart, W.M., 1991, The relationship of decapentaplegic and engrailed expression in Drosophila imaginai disks: Do these genes mark the anterior-posterior compartment boundary?, Development 113:27–33.PubMedGoogle Scholar
  73. Rambourg, A., Clermont, Y., Hermo, L., and Segretain, D., 1987, Tridimensional structure of the Golgi apparatus of non-ciliated epithelial cells of the ductuli efferentes in rat—An electron microscope stereoscopic study, Biol. Cell. 60:103–116.PubMedCrossRefGoogle Scholar
  74. Robertson, J.D., Bodenheimer, T.S., and Stage, D.E., 1963, Ultrastructure of Mauthner cell synapses and nodes in goldfish brains, J. Cell Biol. 19:159–199.PubMedCrossRefGoogle Scholar
  75. Robinson, J.M., and Batten, B.E., 1989, Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy, J. Histochem. Cytochem. 37:61–1765.CrossRefGoogle Scholar
  76. Sabatini, D.D., Bensch, K., and Barrnett, R.J., 1962, New means of fixation for electron micoscopy and histochemistry, Anat. Rec. 142:274.Google Scholar
  77. Sabatini, D.D., Bensch, K., and Barrnett, R.J., 1963, Cytochemistry and electron microscopy. The preservation of cellular structure and enzymatic activity by aldehyde fixation, J. Cell Biol. 17:19.PubMedCrossRefGoogle Scholar
  78. Sabatini, D.D., Bensch, K., and Barmett, R.J., 1964, Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope, J. Histochem. Cytochem. 12:57.PubMedCrossRefGoogle Scholar
  79. Sato, H., Ohnuki, Y., and Fujiwara, K., 1976, Immunofluoresoent anti-tubulin staining of spindle microtubules and critique for the technique. In: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 419–433.Google Scholar
  80. Sato, M., Sardana, M.K., Grasser, W.A., Garsky, V.M., Murray, J.M., and Gould, R.J., 1990, Echistatin is a potent inhibitor of bone resorption in culture, J. Cell Biol 111:1713–1723.PubMedCrossRefGoogle Scholar
  81. Schutze, K., Maniotis, A., and Schliwa, M., 1991, The position of the micro-tubule-organizing center in directionally migrating fibroblasts depends on the nature of the substratum, Proc. Natl Acad. Sci. USA 88:8367–8371.PubMedCrossRefGoogle Scholar
  82. Scopsi, L., and Larsson, L.-I., 1985, Increased sensitivity in immunocytochem-istry effects of double amplification of antibodies and of silver intensification on immunogold and peroxidase-antiperoxidase staining techniques, Histochemistry 82:321–329.PubMedCrossRefGoogle Scholar
  83. Sheetz, M.P., and Spudich, J.A., 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature 303:31–35.CrossRefGoogle Scholar
  84. Smith, P.R., Saccomani, G., Joe, E-H., Angelides, K.J., and Benos, D.J., 1991, Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells, Proc. Natl Acad. Sci. USA 88:6971–6975.PubMedCrossRefGoogle Scholar
  85. Spence, S.G., Argraves, W.S., Walters, L., Hungerford, J.E., and Little, CD., 1992, Fibulin is localized at sites of epithelial-mesenchymal transitions in the early avian embryo, Dev. Biol. 151:473–484.PubMedCrossRefGoogle Scholar
  86. Stamatoglou, S.C, Sullivan, K.H., Johansson, S., Bayley, P.M., Burdett, I.D.J., and Hughes, R.C, 1990, Localization of two fibronectin-binding glycoproteins in rat liver and primary hepatocytes. Co-distribution in vitro of integrin (a5bl) and non-integrin (AGpl 10) receptors in cell-substratum adhesion sites, J. Cell Sci. 97:595–606.PubMedGoogle Scholar
  87. Steinbrecht, R.A., and Zierold, K., eds., 1987, Cryotechniques in Biological Electron Microscopy, Springer-Verlag, Berlin.Google Scholar
  88. Tashima, T., Kawakami, U., Harada, M., Sakata, T., Satoh, N., Nakagawa, T., and Tanaka, H., 1987, Isolation and identification of new oligomers in aqueous solution of glutaraldehyde, Chem. Pharm. Bull 35:4169.CrossRefGoogle Scholar
  89. Terasaki, M., Song, J., Wong, J.R., Weiss, M.J., and Chen, L.B., 1984, Localization of endoplasmic-reticulum in living and glutaraldehyde-fixed cells with fluorescent dyes, Cell 38:101–108.PubMedCrossRefGoogle Scholar
  90. Theurkauf, W.E., and Hawley, R.S., 1992, Meiotic spindle assembly in Droso-phila females: Behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein, J. Cell Biol. 116:1167–1180.PubMedCrossRefGoogle Scholar
  91. Thoolen, B., 1990, BrdUrd labeling of S-phase cells in testes and small intestine of mice; using microwave irradiation for immunogold-silver staining: An immunocytochemical study, J. Histochem. Cytochem. 38:267–273.PubMedCrossRefGoogle Scholar
  92. Tooze, J., 1964, Measurements of some cellular changes during fixation of amphibian erythrocytes with osmium tetroxide solutions, J. Cell Biol. 22:551–563.PubMedCrossRefGoogle Scholar
  93. van Meer, G., Stelzer, E.H.K., Wijnaendts van Resandt, R.W., and Simons, K., 1987, Sorting of glycolipids in epithelial (Madin-Darby canine kidney) cells, J. Cell Biol. 105:1623–1635.PubMedCrossRefGoogle Scholar
  94. von Zastrow, M., and Kobilka, B.K., 1992, Ligand-regulated internalization and recycling of human ß2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors, J. Biol. Chem. 267:3530–3538.Google Scholar
  95. Walsh, M.L., Jen, J., and Chen, L.B., 1979, Transport of serum components into structures similar to mitochondria, Cold Spring Harbor Conf. Cell Prolif. 6:513–520.Google Scholar
  96. Wangensteen, D., Bachofen, H., and Weibel, E.R., 1981, Effects of glutaraldehyde or osmium tetroxide fixation on the osmotic properties of lung cells, J.Microsc. 124:189–196.PubMedCrossRefGoogle Scholar
  97. Weber, K., Rathke, P.C., and Osborn, M., 1978, Cytoplasmic microtubular images in glutaraldehyde-fixed tissure culture cells by electron microscopy and by immunofluorescence microscopy, Proc. Natl Acad. Sci. USA 75:1820–1824.PubMedCrossRefGoogle Scholar
  98. Wild, P., Bertoni, G., Schraner, E.M., and Beglinger, R., 1987, Influence of calcium and magnesium containing fixatives of the ultrastucture of parathyroids, Micron Microsc. Acta 18:259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert Bacallao
    • 1
  • Kianush Kiai
    • 2
  • Lynn Jesaitis
    • 2
  1. 1.Division of Nephrology and Hypertension, Department of Cellular, Molecular and Structural BiologyNorthwestern UniversityChicagoUSA
  2. 2.Department of Cell Biology and AnatomyHarvard UniversityBostonUSA

Personalised recommendations