Image Contrast in Confocal Light Microscopy

  • P. C. Cheng
  • A. Kriete

Abstract

In any form of microscopy, one needs not only an imaging system with enough resolution to reveal the fine details of a specimen but also a suitable contrast mechanism by which to “see” the structures of interest. As defined by the New Webster ′s Dictionary, contrast is the difference between light and dark areas of a negative or print. In other words, contrast is the difference in signal strength between various parts of an image or between details of interest and “background.” In science, the contrast is proportional to the intensity difference (ΔI) between two image areas, divided by the average image brightness Ī.

Keywords

Image Contrast Objective Lens Volume Rendering Optical Section Methyl Salicylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Art, J.J., Goodman, M.B., and Schwartz, E.A., 1990, Simultaneous fluorescent and transmission laser scanning confocal microscopy, Biophys. J. 59:155a.Google Scholar
  2. Barr, M.L., and Kiernan, J.A., 1988, The Human Nervous System—An Anatomical Viewpoint, 5th ed., Lippincott, London, p. 17.Google Scholar
  3. Berezney, R., Meng, C., Samarabandu, J.K., Acharya, R., Lin, T.H., and Cheng, P.C., 1994, Visualizing DNA replication in three dimensions. In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 291–303.CrossRefGoogle Scholar
  4. Born, M., and Woof, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford, England.Google Scholar
  5. Boyde, A., 1985, The tandem scanning reflected light microscope. Part II. Pre-Micro’84 application at UCL, Proc. RMS 20(3): 131–139.Google Scholar
  6. Chen, V.K.-H., and Cheng, P.C., 1989, Real-time confocal imaging of Stentor coeruleus in epi-reflective mode by using a Tracor Northern Tandem scanning microscope, Proc. 47 th Annual Meeting EMSA 47:138–139.Google Scholar
  7. Cheng, P.C., and Shinozaki, D.M., 1992, The use of confocal light microscopy in the study of X-ray contact images on PMMA resist. In: X-ray Microscopy—III (A. Michette, G.R. Monies, and C.J. Buckley, eds.), Springer-Verlag, Berlin, pp. 359–363.Google Scholar
  8. Cheng, P.C., Waiden, D.B., and Greyson, R.I., 1979, Improved plant microtechnique for TEM, SEM and LM specimen preparation, Natl. Sci. Counc. Month. Rep. China 7:1000–1007.Google Scholar
  9. Cheng, P.C., Chen, V.H.-K., Kim, H.G., and Pearson, R.E., 1989, An epi-fluo-rescent spinning-disk confocal microscope. Proc. 47th Annual Meeting EMSA, 47:136–137.Google Scholar
  10. Cheng, P.C., Acharya, R., Lin, T.H., Samarabandu, J.K., Wang, G., Shinozaki, D.M., Berezney, R., Meng, C., Liou, W.S., Tan, T.C., Summers, R.G., Kuang, H., and Musial, C., 1992, 3D image analysis and visualization in light microscopy and x-ray microtomography. In: Visualization of Biomedical Microscopies (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 361–398.Google Scholar
  11. Cheng, P.C., Pareddy, D.R., Lin, T.H., Samarabandu, J.K., Acharya, R., Wang, G., and Liou, W.S., 1994, Confocal microscopy of botanical specimens. In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 339–380.CrossRefGoogle Scholar
  12. Cogswell, C.J., 1994, High resolution confocal microscopy of phase and amplitude objects. In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 87–102.CrossRefGoogle Scholar
  13. Debrin, R.A., Carpenter, L., and Hanrahan, P., 1988, Volume rendering, Computer Graphics 22(4):65–74.CrossRefGoogle Scholar
  14. Gordon, R., Frieder, G., and Reynolds, R.A., 1985, Back-to-front display of voxel-based objects, IEEE CG&Amp;A 5(l):52–60.Google Scholar
  15. Harridose, A., Shinozaki, D.M., and Cheng, P.C., 1990, Laser scanning confocal light microscopy of cable material, Proc. IEEE Conf Electr. Insul. 392–397.Google Scholar
  16. Johansen, D.A., 1940, Plant Microtechnique, McGraw-Hill, New York.Google Scholar
  17. Jones, and Handreck, 1967, Silica in soils, plants, and animals, Adv. Agron. 19:107–149.CrossRefGoogle Scholar
  18. Kriete, A., 1994a, Application of digital image quality criteria to optimize the confocal microscope setup, SPIE 2184:195–205.CrossRefGoogle Scholar
  19. Kriete, A., 1994b, Image quality considerations in computerized 2D and 3D microscopy. In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 209–230.CrossRefGoogle Scholar
  20. Kriete, A., and Pepping, T., 1992, Volumetric data representations in microscopy. In: Visualizations in Biomedical Microscopies: 3D Imaging and Computer Applications (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 329–360.Google Scholar
  21. Kriete, A., Gundlach, H., Amelinckx, S., and Reimer, L., 1994, Microscopy. In: Ullmann’s Encyclopedia of Industrial Chemistry VCH, Weinheim, Germany, pp. 213–278.Google Scholar
  22. Levoy, M., 1988, Display of surfaces from volume data, IEEE CG&Amp;A 8(3):29–37.Google Scholar
  23. Linfoot, E.H., 1960, Qualitatsbewertung optischer Bilder, Vieweg Verlag, Braunschweig.CrossRefGoogle Scholar
  24. Meng, C., Samarabandu, J.K., Acharya, R., Lin, T.H., Cheng, P.C., and Berezney, R., 1991, The study of DNA replication sites in mammalian cell by confocal light microscopy and multi-dimensional image analysis, Scanning 13(1): 117–118.Google Scholar
  25. Nislow, C., and Morrill, J.B., 1988, Regionalized cell division during sea urchin gastrulation contributes to archenteron formation and is correlated with the establishment of larval symmetry, Dev. Growth Differ. 38:483–499.CrossRefGoogle Scholar
  26. Overington, J., 1976, Vision and Acquisition, Pentech Press, London.Google Scholar
  27. Paddock, S.W., 1989, Tandem scanning reflected-light microscopy of cell-stratum adhesions and stress fibers in Swiss 3T3 cells, J. Cell. Sci. 93:143–146.PubMedGoogle Scholar
  28. Reijnen, W.H., van Herpen, M.M.A., de Groot, P.F.M., Olmedilla, A., Schrauwen, J.A.M., and Weterings, K.A.P., 1991, Cellular localization of a pollen-specific mRNA by in situ hybridization and confocal laser scanning microscopy, Sex Plant Reprod. 4:254–257.CrossRefGoogle Scholar
  29. Roth, S.D., 1982, Ray-tracing for solid modeling, Comput. Graphics Image Processing 18:109–144.CrossRefGoogle Scholar
  30. Scheibel, M.E., and Scheibel, A.B., 1970, The rapid Golgi method. Indian summer or renaissance? In: Contemporary Research Methods in Neuroanatomy (W.J.H. Nauta and S.O.E. Ebbeson, eds.), Springer-Verlag, New York, pp. 1–11.CrossRefGoogle Scholar
  31. Shannon, C.E., 1948, A mathematical theory of communication, Bell Syst. Tech. J. 27:.Google Scholar
  32. Sharonov, S., Morjani, H., and Manfait, M., 1992, Confocal spectral imaging analysis: A new concept to study the drug distribution in single living cancer cell, Anticancer Res. 12:1804.Google Scholar
  33. Sharonov, S., Chourpa, I., Morjani, H., Nabiev, I., and Manfait, M., 1993, Confocal spectral imaging analysis in studies of the spatial distribution of antitumour drugs within living cancer cells, Anal. Chim. Acta. Google Scholar
  34. Sheppard, C.J.R., 1993, Confocal microscopy: Basic principles and system performance. In: Multidimensional Microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, Berlin, pp. 1–31.Google Scholar
  35. Shinozaki, D.M., Cheng, P.C., Haridoss, A., and Fenster, A., 1991a, Three dimensional optical microscopy of water trees in polyethylene, J. Mater. Sri. 26:6151–6160.CrossRefGoogle Scholar
  36. Shinozaki, D.M., Klauzner, A., and Cheng, P.C., 1991b, Inelastic deformation of polyimide-copper thin films. Mater. Sci. Eng. A142:135–144.Google Scholar
  37. Summers, R.G., and Cheng, P.C., 1989, Analysis of embryonic cell division patterns using laser scanning confocal microscopy, Proc. 47th Annual Meeting EMSA, 47:140–141.Google Scholar
  38. Tuy, H.K., and Tuy, L.T., 1984, Direct 2D display of 3D objects, IEEE CG&A 4:29–33.Google Scholar
  39. Udupa, J.K., and Hung, H.M., 1990, Surface versus volume rendering: A comparative assessment, VBC ’91, Atlanta, Proc. IEEE, pp. 83–91.Google Scholar
  40. Watson, 1989, Real-time confocal microscopy of high speed dental burr/tooth cutting interactions, Abstracts of the 1 st International Conference on Confocal Microscopy and the 2nd International Conference on 3D Image Processing in Microscopy, Amsterdam, March 15–17, 1989.Google Scholar
  41. Wells, K.S., Sandison, D.R., Strickler, J.H., and Webb, W.W., 1990, Quantitative fluorescence imaging with laser scanning confocal microscopy. In: Handbook of Biological Confocal Microscopy (J. Pawley, ed.), Plenum Press, New York.Google Scholar
  42. White, J.G., Amos, W.B., and Fordham, F., 1987, An evaluation of confocal vs. conventional imaging of biological structures by fluorescent light microscopy, J. Cell Biol. 105:41–48.PubMedCrossRefGoogle Scholar
  43. Wijaendts van Resandt, W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1984, Optical fluorescence microscopy in three dimensions: Microtomoscopy. J. Microsc. 138(1):29–34.CrossRefGoogle Scholar
  44. Xiao, C.O., Corle, T.R., and Kino, G.S., 1988, Real-time confocal scanning microscope, Appl. Phys. Lett. 53(B):716–718.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. C. Cheng
    • 1
  • A. Kriete
    • 2
  1. 1.Advanced Microscopy and Imaging Laboratory, Department of Electrical and Computer Engineering and Department of Biological SciencesState University of New York at BuffaloBuffaloUSA
  2. 2.Institute for Anatomy and CytobiologyUniversity of GiessenGiessenGermany

Personalised recommendations