Skip to main content

Fluorophores for Confocal Microscopy

Photophysics and Photochemistry

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Fluorescence is probably the most important optical readout mode in biological confocal microscopy, because it can be so much more sensitive and specific than absorbance or reflectance, and because it works so well with epi-illumination, which greatly simplifies scanner design. These advantages of fluorescence are critically dependent on the availability of suitable fluorophores that can either be tagged onto biological macromolecules to show their location, or whose optical properties are sensitive to the local environment. Despite the pivotal importance of good fluorophores, little is known about how to rationally design good ones. Whereas the concept of confocal microscopy is only a few decades old and nearly all the optical, electronic, and computer components to support it have been developed or redesigned in the last few years, the most popular fluorophores were developed more than a century ago (in the case of fluoresceins or rhodamines) or several billion years ago (in the case of phycobiliproteins). Moreover, whereas competition between commercial makers of confocal microscopes stimulates ardent efforts to refine the instrumentation, relatively few companies or academic scientists are interested in improving fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y., 1991, Fluorescence ratio imaging of cyclic AMP in single cells, Nature 349:694–697.

    Article  PubMed  CAS  Google Scholar 

  • Anel, A., Richieri, G.V., and Kleinfeld, A.M., 1993, Membrane partition of fatty acids and inhibition of T cell function, Biochemistry 32:530–536.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, D., 1977, Cell surface heating during fluorescence photobleaching recovery experiments, Biophys. J. 18:129–131.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, D., 1989, Fluorescence polarization microscopy, Methods Cell Biol 30:333–352.

    Article  PubMed  CAS  Google Scholar 

  • Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang, B.-K., Kandel, E.R., and Tsien, R.Y., 1993, Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons, Science 260:222–226.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, E.A., Jr., and Rollefson, G.K., 1953, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21:1315–1322.

    Article  CAS  Google Scholar 

  • Ballard, S.G., and Ward, D.C., 1993, Fluorescence in situ hybridization using digital imaging microscopy, J. Histochem. Cytochem. 12:1755–1759.

    Article  Google Scholar 

  • Beverloo, H.B., van Schadewijk, A., Bonnet, J., van der Geest, R., Runia, R., Verwoerd, N.P., Vrolijk, J., Ploem, J.S., and Tanke, H.J., 1992, Preparation and microscopic visualization of multicolor luminescent immu-nophsphors, Cytometry 13:561070.

    Article  Google Scholar 

  • Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: Methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., and Staiger, V., 1988, Optical recording with single cell resolution from monolayered slice cultures of rat hippocampus, Neurosci. Lett. 92:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 1993, Multicolor laser scanning confocal immunofluorescence microscopy: Practical applications and limitations, Methods Cell Biol. 38:97–181.

    Article  PubMed  CAS  Google Scholar 

  • Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1987, Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH, J. Cell Biol. 104:1019–1033.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., andPrasher, D.C., 1994, Green fluorescent protein as a marker for green expression, Science 263:802–805.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.F., and Scott, C.H., 1985, Atlas of fluorescence spectra and lifetimes of dyes attached to protein, Anal Lett. 18:393–421.

    Article  CAS  Google Scholar 

  • Cohen, L.B., and Lesher, S., 1986, Optical monitoring of membrane potential: Methods of multisite optical measurement. In: Optical Methods in Cell Physiology (P. De Weer and B.M. Salzberg, eds.), Wiley, New York, pp. 71–99.

    Google Scholar 

  • Dix, J.A., and Verkman, A.S., 1989, Spatially resolved anisotropy images of fluorescent probes incorporated into living cells, Biophys. J. 55:189a.

    Google Scholar 

  • Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P., and Loew, L.M., 1988, Membrane potentials can be determined in individual cells from the Nernstian distribution of cationic dyes, Biophys. J. 53:785–794.

    Article  PubMed  CAS  Google Scholar 

  • Fine, A., Amos, W.B., Durbin, R.M., and McNaughton, P.A., 1988, Confocal microscopy: Applications in neurobiology, Trends Neurosci. 11:346–351.

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, W., Ernst, L.A., Taylor, D.L., and Waggoner, A.S., 1989, Multiparameter fluorescence and the selection of optimal filter sets: Mathematics and computer program, Proc. Soc. Photo. Opt. Instrum. Eng. 1063:74–122.

    CAS  Google Scholar 

  • Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yields of singlet oxygen production by xanthene derivatives, Photochem. Photobiol 37:271–278.

    Article  CAS  Google Scholar 

  • Giloh, H., and Sedat, J.W., 1982, Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by «-propyl gallate, Science 217:1252–1255.

    Article  PubMed  CAS  Google Scholar 

  • Glazer, A.N., 1988, Fluorescence-based assay for reactive oxygen species: A protective role for creatinine, FASEB J. 2:2487–2491.

    PubMed  CAS  Google Scholar 

  • Glazer, A.N., 1989, Light guides. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem. 264:1–4.

    PubMed  CAS  Google Scholar 

  • Gross, D., and Loew, L.M., 1989, Fluorescent indicators of membrane potential: Microspectrofluorometry and imaging, Methods Cell Biol. 30:193–218.

    Article  PubMed  CAS  Google Scholar 

  • Harootunian, A.T., Adams, S.R., Wen, W., Meinkoth, J.L., Taylor, S.S., and Tsien, R.Y., 1993, Movement of the free catalytic subunit of cAMP dependent protein kinase into and out of the nucleus can be explained by diffusion, Mol Biol. Cell 4:993–1002.

    PubMed  CAS  Google Scholar 

  • Haugland, R.P., 1989, Molecular Probes: Handbook of Fluorescent Probes and Research, Chemicals, Molecular Probes Inc., Eugene, Oregon, pp.86–94.

    Google Scholar 

  • Herman, B., 1989, Resonance energy transfer microscopy, Methods Cell Biol 30:219–243.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Cruz, A., Sala, F., and Adams, P.R., 1989, Subcellular dynamics of [Ca]j monitored with laser scanned confocal microscopy in a single voltage-clamped vertebrate neuron, Biophys. J. 55:216a.

    Google Scholar 

  • Hirschfeld, T., 1976, Quantum efficiency independence of the time integrated emission from a fluorescent molecule, Appl. Optics 15:3135–3139.

    Article  CAS  Google Scholar 

  • Jericevic, Z., Wiese, B., Bryan, J., and Smith, L.C., 1989, Validation of an imaging system: Steps to evaluate and validate a microscope imaging system for quantitative studies, Methods Cell Biol. 30:47–83.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.C., Fisher, P.J., Prendergast, F.G., and Haugland, R.P., 1988, Bodipy: A novel fluorescein and NBD substitute, J. Cell Biol. 107:34a.

    Google Scholar 

  • Kao, J.P.Y., Harootunian, A.T., and Tsien, R.Y., 1989, Photochemically generated cytosolic calcium pulses and their detection by fluo-3, J. Biol. Chem. 264:8179–8184.

    PubMed  CAS  Google Scholar 

  • Kaplan, N.O., 1960, The pyridine coenzymes. In: The Enzymes, 2nd ed. (P.D. Boyer, H. Lardy, and K. Myrbäck, eds), Academic Press, New York, pp. 105–169.

    Google Scholar 

  • Koziol, J., 1971, Fluorometric analyses of riboflavin and its coenzymes, Methods Enzymol 18B:253–285.

    Article  Google Scholar 

  • Kurtz, I., and Balaban, R.S., 1985, Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile: A method for determining intracellular pH in cultured cells, Biophys. J. 48:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Kurtz, I., and Emmons, C., 1993, Measurement of intracellular pH with a laser scanning confocal microscope. Methods Cell Biol. 38:183–193.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara, M., and Verkman, A.S., 1988, Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule, Biophys. J. 54:587–593.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara, M., Berry, C.A., and Verkman, A.S., 1988, Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique, Biophys. J. 54:595–602.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J.R., 1983a, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Book  Google Scholar 

  • Lakowicz, J.R., 1983b, Fluorescence lifetime imaging, Anal. Biochem. 202:316–30.

    Article  Google Scholar 

  • Lewis, G.N., Lipkin, D., and Magel, T.T., 1941, Reversible photochemical processes in rigid media: A study of the phosphorescent state, J. Am. Chem. Soc. 63:3005–3018.

    Article  CAS  Google Scholar 

  • Lindqvist, L., 1960, A flash photolysis study of fluorescein, Ark Kemi 16:79 – 138.

    CAS  Google Scholar 

  • Liphardt, B., Liphardt, B., and Lüttke, W., 1982, Laserfarbstoffe mit intramolekularer Triplettlöschung, Chem. Ber. 115:2997–3010.

    Article  CAS  Google Scholar 

  • Liphardt, B., Liphardt, B., and Lüttke, W., 1983, Laser dyes III: Concepts to increase the photostability of laser dyes, Opt. Commun. 48:129–133.

    Article  CAS  Google Scholar 

  • Loew, L.M., 1993, Confocal microscopy of Potentiometric fluorescent dyes, Methods Cell Biol 38:195–209.

    Article  PubMed  CAS  Google Scholar 

  • Manitto, P., Speranza, G., Monti, D., and Gramatica, P., 1987, Singlet oxygen reactions in aqueous solution. Physical and chemical quenching rate constants of crocin and related carotenoids, Tetrahedron Lett. 28:4221–4224.

    Article  CAS  Google Scholar 

  • Marriott, G., Clegg, R.M., Arndt-Jovin, D.J., and Jovin, T.M., 1991, Time-resolved imaging studies. Phosphorescence and delayed fluorescence imaging, Biophys. J. 60:1374–1387.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, I.B.C., and Rodgers, M.A.J., 1982, Crocetin, a water soluble carote-noid monitor for singlet molecular oxygen, Photochem. Photobiol. 36:1–4.

    Article  CAS  Google Scholar 

  • Mathies, R.A., and Stryer, L., 1986, Single-molecule fluorescence detection: A feasibility study using phycoerythrin. In: Applications of Fluorescence in the Biomedical Sciences (D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, and R.R. Birge, eds.), Liss, New York, pp. 129–140.

    Google Scholar 

  • Matthews, M.M., and Sistrom, W.R., 1959, Function of carotenoid pigments in nonphotosynthetic bacteria, Nature 184:1892–1893.

    Article  Google Scholar 

  • Minata, A., Kao, J.P.Y., and Tsien, R.Y., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem. 264:8171–8178.

    Google Scholar 

  • Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., and Waggoner, A.S., 1993, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconj. Chem. 4:105–111.

    Article  CAS  Google Scholar 

  • Mukkala, V.M., 1993, Development of stable, photoluminescent europium (III) and terbium (III) chelates suitable as markers in bioaffinity assays: Their synthesis and luminescence properties, Thesis, University of Turku, Turku, Finland.

    Google Scholar 

  • Nguyen, D.C., Keller, R.A., Jett, J.H., and Martin, J.C., 1987, Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence, Anal. Chem. 59:2158–2161.

    Article  PubMed  CAS  Google Scholar 

  • Oi, V., Glazer, A.N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol. 93:981–986.

    Article  PubMed  CAS  Google Scholar 

  • Peck, K., Stryer, L., Glazer, A.N., and Mathies, R.A., 1989, Single molecule fluorescence detection: Autocorrelation criterion and experimental realization with phycoerythrin, Proc. Natl. Acad. Sci. USA 86:408–091.

    Article  Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea victoria green-fluorescent protein, Gene 111:229–233.

    Article  PubMed  CAS  Google Scholar 

  • Rechtenwald, D.J., 1989, United States Patent No. 4,876,190.

    Google Scholar 

  • Reyftmann, J.P., Kohen, E., Morliere, P., Sanrus, R., Kohen, C., Mangel, W.F., Dubertret, L., and Hirschberg, J.G., 1986, A microspectrofluorometric study of porphyrin-photosensitized single living cells—I. Membrane alterations, Photochem. Photobiol. 44:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Richieri, G.V., Ogata, R.T., and Kleinfeld, A.M., 1992, A fluorescently labeled intestinal fatty acid binding protein, J. Biol. Chem. 267:23495–23501.

    PubMed  CAS  Google Scholar 

  • Richieri, G.V., Anel, A., and Kleinfeld, A.M., 1993, Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry 32:7574–7580.

    Article  PubMed  CAS  Google Scholar 

  • Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A., and Glazer, R.N., 1992, Stable fluorescent complexes of double-stranded DNAs with bis-intercalating asymmetrical cyanine dyes: Properties and applications, Nucl. Acids Res. 20:2803–2812.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, F.P., 1983, New developments in laser dyes, Laser Chem. 3:265–278.

    Article  Google Scholar 

  • Schneider, M.B., and Webb, W.W., 1981, Measurement of submicron laser beam radii, Appl. Optics 20:1382–1388.

    Article  CAS  Google Scholar 

  • Seveus, L., Vaisala, M., Hemmlia, I., Kojola, H., Roomans, G.M., and Soini, E., 1994, Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability, Microsc. Res. Tech. 27, in press.

    Google Scholar 

  • Sheetz, M.P., and Koppel, D.E., 1979, Membrane damage caused by irradiation of fluorescent concanavalin A, Proc. Natl. Acad. Sci. USA 76:3314–3317.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.J., and Augustine, G.J., 1988, Calcium ions, active zones and synaptic transmitter release, Trends Neurosci. 11:458–464.

    Article  PubMed  CAS  Google Scholar 

  • Soini, E.J., Pelliniemi, L.J., Hemmila, I.A., Mukkala, V.-M., Kankare, J.J., and Froidman, K., 1988, Lanthanide chelates as new fluorochrome labels for cytometry, J. Histochem. Cytochem. 36:1449–1451.

    Article  PubMed  CAS  Google Scholar 

  • Southwick, P.L., Ernst, L.A., Tauriello, E.W., Parker, S.R., Mujumdar, R.B., Mujumdar, S.R., Clever, H.A., and Waggoner, A.S., 1990, Cyanine dye labeling reagents—Carboxymethylindocyanine succinimidyl esters, Cytometry 11:418–430

    Article  PubMed  CAS  Google Scholar 

  • Strickler, S.J., and Berg, R.A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37:814–822.

    Article  CAS  Google Scholar 

  • Tinoco, I., Mickols, W., Maestre, M.F., and Bustamante, C., 1987, Absorption, scattering, and imaging of biomolecular structures with polarized light, Annu. Rev. Biophys. Biophys. Chem. 16:319–349.

    Article  PubMed  CAS  Google Scholar 

  • Trask, B.J., 1991, DNA sequence localization in metaphase and interphase cells by fluorescence in situ hybridization, Methods Cell Biol. 35:1–35.

    Google Scholar 

  • Tsien, R.Y., 1988, Fluorescence measurement and photochemical manipulation of cytosolic free calcium, Trends Neurosci. 11:419–424.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., 1989a, Fluorescent probes of cell signaling, Annu. Rev. Neurosci. 12:227–253.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., 1989b, Fluorescent indicators of ion concentrations, Methods Cell Biol. 30:127–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., and Poenie, M., 1986, Fluorescence ratio imaging: A new window into intracellular ionic signaling, Trends Biochem. Sci. 11:450–455.

    Article  CAS  Google Scholar 

  • Uster, P.S., and Pagano, R.E., 1986, Resonance energy transfer microscopy: Observations of membrane-bound fluorescent probes in model membranes and in living cells, J. Cell Biol. 103:1221–1234.

    Article  PubMed  CAS  Google Scholar 

  • Vigers, G.P.A., Coue, M., and Mcintosh, J.R., 1988, Fluorescent microtubules break up under illumination, J. Cell Biol. 107:1011–1024.

    Article  PubMed  CAS  Google Scholar 

  • Wages, J., Packard, B., Edidin, M., and Brand, L., 1987, Time-resolved fluorescence of intracellular quin-2, Biophys. J. 51:284a.

    Google Scholar 

  • Waggoner, A., DeBiasio, R., Conrad, P., Bright, G.R., Ernst, L., Ryan, K., Nederlof, M., and Taylor, D., 1989, Multiple spectral parameter imaging, Methods Cell Biol. 30:449–478.

    Article  PubMed  CAS  Google Scholar 

  • Waggoner, A.S., Ernst, L.A., Chen, C.-H., and Rechtenwald, D.J., 1993, A new fluorescent antibody label for three-color flow cytometry with a single laser, Ann, NY. Acad. Sci. 677:185–193.

    Article  CAS  Google Scholar 

  • Ward, W.W., Cody, C.W., and Hart, R.C., 1980, Spectrophotometic identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins, Photochem. Photobiol. 31:611–615.

    Article  CAS  Google Scholar 

  • Watt, R.M., and Voss, E.W., Jr, 1977, Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies, Immunochemistry 14:533–541.

    Article  PubMed  CAS  Google Scholar 

  • Wessendorf, M.W., and Brelje, T.C., 1992, Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrho-damine, lissamine rhodamine, Texas Red, and cyanine 3.18, Histochemistry 98:81–85.

    Article  PubMed  CAS  Google Scholar 

  • White, J.C., and Stryer, L., 1987, Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem. 161:442–452.

    Article  PubMed  CAS  Google Scholar 

  • White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E.O., Sociobiology, Harvard University Press, Cambridge, Massachusetts, pp. 38–43.

    Google Scholar 

  • Wories, H.J., Koek, J.H., Lodder, G., Lugtenburg, J., Fokkens, R., Driessen, O., and Mohn, G.R., 1985, A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethen-1,1′-BF2 complex, Recl. Trav. Chim. Pays-Bas 104:288–291.

    Article  CAS  Google Scholar 

  • Yu, H., Ernst, L.A., Wagner, M., and Waggoner, A.S., 1992, Sensitive detection of RNAs in single cells by flow cytometry, Nucl. Acids Res. 20:83–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsien, R.Y., Waggoner, A. (1995). Fluorophores for Confocal Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics