Advertisement

Visualization Systems for Multidimensional CLSM Images

  • N. S. White

Abstract

Biological confocal microscopy has prompted many developments in multidimensional imaging. However, 3D visualization techniques originated from applications involving computer-generated models of macroscopic objects. These methods have been adapted for biological visualization of mainly tomographic medical images and serial section data (e.g., Cookson et al., 1989; review: Cookson, 1994). Most algorithms were not devised specifically for microscopy data, and only a few critical assessments have been made of suitable approaches for confocal data (Kriete and Pepping, 1992). Objective visualization of control, calibration, and test specimens is the best way of determining which algorithms are appropriate for a particular analysis. Hardware developments and advances in software engineering tools have made available many 3D reconstruction systems that can be used to visualize confocal images. These are available from confocal microscope manufacturers, third-party vendors, and other microscopists. The author has attempted to collate important techniques used in these programs. Sources and approximate cost of example systems are given in Table 1.

Keywords

Visualization System Motion Parallax Embed Line Silicon Graphic Marching Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agard, D.A., Hiroaka, Y., Shaw, P., and Sedat, J.W., 1989, Microscopy in three dimensions, Methods Cell Biol. 30:353–377.PubMedCrossRefGoogle Scholar
  2. Aslund, N., Liljeborg, A., Forsgren, P.-O., and Wahlsten, S., 1988, 3D scanning reconstruction, Lab. Prac. 37(12):58–61.Google Scholar
  3. Bennet, S.T., Flicker, M.D., Bennet, M.D., and White, N.S., 1990, The 3D localisation of chromosomes using confocal microscopy. Trans. R. Microsc. Soc. 1:441–444.Google Scholar
  4. Blinn, J.F., 1977, Models of light reflection for computer synthesised pictures, Comput. Graphics 11 (2): 192–198.CrossRefGoogle Scholar
  5. Bolsover, R., Silver, R.A., and Whitaker, M., 1993, Ratio imaging measurements of intracellular calcium and pH. In: Electronic Light Microscopy (D. Shotton, ed.), Wiley Liss, New York, pp. 181–210.Google Scholar
  6. Born, M., and Wolf, E., 1991, Principles of Optics, Pergamon Press, Oxford.Google Scholar
  7. Boyde, A., 1987, Colour coded stereo images from the tandem scanning reflected light microscope, J. Microsc. 146:137–145.PubMedCrossRefGoogle Scholar
  8. Boyde, A., 1992, Real time direct-view confocal light microscopy. In: Electronic Light Microscopy (D. Shotton, ed.), Wiley Liss, New York, pp. 289–314.Google Scholar
  9. Braddick, O.J., and Sleigh, A.C., 1983, Physical and Biological Processing of Images, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  10. Brakenhoff, G.J., Van der Voort, H.T.M., and Oud, J.L., 1990, Three-dimensional representation in confocal microscopy. In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London, pp. 185–197.Google Scholar
  11. Carlsson, K., 1991, The influence of specimen refractive index, detector signal integration and non-uniform scan speed on the imaging properties in confocal microscopy, J. Microsc. 163:167–178.CrossRefGoogle Scholar
  12. Cheng, P.C., Acharya, R., Lin, T.H., Samarabandu, G., Wang, Shinozaki, D.D., Berezney, R., Meng, C., Tarng, W.H., Liou, W.S., Tan, T.C., Summers, R.G., Kuang, H., and Musial, C., 1992, 3D image analysis and visualisation in light microscopy and X-ray micro-tomography. In: Visualisation in Biomedical Microscopies (A. Kriete, ed.), VCH, New York.Google Scholar
  13. Cohen, A.R., Roysam, B., and Turner, J.N., 1994, Automated tracing and volume measurements of neurons from 3D confocal fluorescence microscopy data, J. Microsc. 173:103–114.PubMedCrossRefGoogle Scholar
  14. Cook, R.L., and Torrance, K.E., 1982, A reflectance model for computer graphics, Comput. Graphics, 15(3):307–316.Google Scholar
  15. Cookson, M.J., 1994, Three dimensional reconstruction in microscopy, Proc. R. Microsc. Soc. 29(1):3–10.Google Scholar
  16. Cookson, M.J., Dykes, E., Holman, J.G., and Gray, A., 1989, A micro-computer based system for generating realistic 3D shaded images reconstructed from serial section, Eur. J. Cell Biol. Suppl.25 48:69–72.Google Scholar
  17. Cookson, M.J., Davies, C.J., Entwistle, A., and Whimster, W.F., 1993, The microanatomy of the alveolar duct of the human lung imaged by confocal microscopy and visualised with computer based 3D reconstruction, Computerised Medical Imaging and Graphics 17(3):201–210.CrossRefGoogle Scholar
  18. Drebin, R.A., Carpenter, L., and Hanrahan, P., 1988, Volume rendering, Computer Graphics 22(4):65–74.CrossRefGoogle Scholar
  19. Fahle, M., and de Luca, E., 1994, Spatio-temporal interpolation in depth, Vision Res. 34(3):343–348.PubMedCrossRefGoogle Scholar
  20. Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F., 1990, Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley, Reading, Massachusetts.Google Scholar
  21. Forsgren, P.O., Franksson, O., and Liljeborg, A., 1990, Software and electronics for a digital 3D microscope. In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London.Google Scholar
  22. Freire, M., and Boyde, A., 1990, Study of Golgi-impregnated material using the confocal tandem scanning reflected light microscope, J. Microsc. 158:285–290.PubMedCrossRefGoogle Scholar
  23. Fricker, M.D., and White, N.S., 1992, Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166:29–42.CrossRefGoogle Scholar
  24. Frisby, J.P., and Pollard, S.B., 1991, Computational issues in solving the stereo correspondence problem. In: Computational Models of Visual Process-ing (M.S. Landy and J.A. Movshon, eds.), MIT Press, Cambridge, Massachusetts, pp. 331–358.Google Scholar
  25. Frome, F., 1983, Incorporating the human factor in colour CAD systems, Proc. IEEE 20th Design Automation Conference, pp. 189–195.Google Scholar
  26. Gordon, D., and Reynolds, A., 1985, Image shading of 3-dimensional objects, Comput. Vision Graphics Image Proc. 29:361–376.CrossRefGoogle Scholar
  27. Gourard, H., 1971, Continuous shading of curved surfaces, IEEE Trans. Comput. 20:623–629.CrossRefGoogle Scholar
  28. Grabski, S., Feijter, A.W., and Schindler, M., 1993, The Plant Cell 5:25–38.PubMedGoogle Scholar
  29. Guilak, F., 1993, Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections, J. Microsc. 173:245–256.CrossRefGoogle Scholar
  30. Gundersen, H.J.G., et al., 1988, The new stereological tools, Acta Pathol., Microbiol. Immunol. Scand. 96:857–881.Google Scholar
  31. Hallgren, R.C., and Buchholz, C., 1992, Improved solid surface rendering with the simulated fluorescence process (SFP) algorithm, J. Microsc. 166:rp3-rp4.CrossRefGoogle Scholar
  32. Hell, S., Reiner, G., Cremer, C., and Stelzer, H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.CrossRefGoogle Scholar
  33. Holmes, T.J., and Liu, Y.-H., 1992, Image restoration for 2-D and 3-D fluorescence microscopy. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, New York, pp. 283–327.Google Scholar
  34. Howard, C.V., and Sandau, K., 1992, Measuring the surface area of a cell by the method of spatial grid with a CLSM—A demonstration, J. Microsc. 165:183–188.PubMedCrossRefGoogle Scholar
  35. Hudson, B., and Makin, M.J., 1970, The optimum tilt angle for electron stereo-microscopy, J. Sci. Instrum. (J. Phys. Eng.) (GB) 3:311.CrossRefGoogle Scholar
  36. Kay, D.S., and Greenberg, D., 1979, Transparency for computer synthesised objects, Comput. Graphics 13(2): 158–164.CrossRefGoogle Scholar
  37. Kriete, A., and Pepping, T., 1992, Volumetric data representations in microscopy: Application to confocal and NMR-microimaging. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, New York, pp. 329–360.Google Scholar
  38. Landy, M.S., and Movshom, J. A., 1991, Computational Models of Visual Processing, MIT Press, Cambridge, Massachusetts.Google Scholar
  39. Lee, J.S., 1983, Digital image smoothing and the sigma filter, Comput. Vision Graphics Image Proc, Nov. 1983.Google Scholar
  40. Lee, J.S., 1986, Edge detection by partitioning. In: Statistical Image Processing and Graphics (E.J. Wegman, ed.), Dekker, New York, pp. 59–69.Google Scholar
  41. Levoy, M., 1988, Display of surfaces from volume data, IEEE Comput. Graphics Appl. 8(3):29–37.CrossRefGoogle Scholar
  42. Lorensen, W.E., and Cline, H.E., 1987, Marching Cubes, a high resolution 3D surface construction algorithm, Comput. Graphics 21:163–169.CrossRefGoogle Scholar
  43. Masters, B., 1992, Confocal ocular microscopy: A new paradigm for ocular visualisation. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, New York, pp. 183–203.Google Scholar
  44. Mattfeldt, T., Clarke, A., and Archenhold, G., 1994, Estimation of the directional distribution of spatial fibre processes using stereology and confocal scanning laser microscopy, J. Microsc. 173:87–101.Google Scholar
  45. Messerli, J.M., van der Voort, H.T.M., Rungger-Brandle, E., and Perriard, J.-C., 1993, Three dimensional visualisation of multi-channel volume data: The smSFP algorithm, Cytometry 14:723–735.CrossRefGoogle Scholar
  46. Murch, G.M., 1984, Physiological principles for the effective use of colour, IEEE Comput. Graphics Appl. 4:49–54.Google Scholar
  47. Nakayama, 1985, Biological image motion processing: A review, Vision Res. 25(5):625–660.PubMedCrossRefGoogle Scholar
  48. Odgaard, A., Andersen, K., Meisen, F., and Gundersen, H.J., 1990, A direct method for fast three-dimensional serial reconstruction, J. Microsc. 159:335–342.PubMedCrossRefGoogle Scholar
  49. Oldmixon, E.H., and Carlsson, K., 1993, Methods for large data volumes from confocal scanning laser microscopy of lung, J. Microsc. 170(3): 221–228.PubMedCrossRefGoogle Scholar
  50. Patterson, B.K., et al., 1993, Science 260:976–979.PubMedCrossRefGoogle Scholar
  51. Perry, V.H., and Cowey, A., 1985, The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors, Vision Res. 25:1795–1810.PubMedCrossRefGoogle Scholar
  52. Phong, B.-T., 1975, Illumination for computer generated pictures, Commun. ACM 18(6):311–317.CrossRefGoogle Scholar
  53. Phong, B.-T., and Crow, F.C., 1975, Improved rendition of polygonal models of curved surfaces, Proc. 2nd USA-Japan Comput. Conf, pp. 475–480.Google Scholar
  54. Poggio, G., and Poggio, T., 1984, The analysis of stereopsis, Annu. Rev. Neurol. 7:379–412.CrossRefGoogle Scholar
  55. Richards, W., 1970, Stereopsis and stereoblindness, Exp. Brain Res. 10:380–388.PubMedCrossRefGoogle Scholar
  56. Rigaut, J.P., Carvajal-Gonzalez, S., and Vassy, J., 1992, 3D image cytometry. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, New York, pp. 205–248.Google Scholar
  57. Robb, R.A., 1988, Multidimensional biomedical image display and analysis in the Biotechnology Computer Resource at the Mayo Clinic, Machine Vision and Applications 1:75–96.CrossRefGoogle Scholar
  58. Shaw, P.J., and Rawlins, D.J., 1991, The point-spread function of a confocal microscope: Its measurement and use in deconvolution of 3-D data, J. Microsc. 163:151–165.CrossRefGoogle Scholar
  59. Sheppard, C.J.R., and Gu, M., 1992, The significance of 3-D transfer functions in confocal scanning microscopy, J. Microsc. 165:377–390.CrossRefGoogle Scholar
  60. Sheppard, C.J.R., and Gu, M., 1993, Modelling of three-dimensional fluorescence images of muscle fibres: An application of three-dimensional optical transfer function, J. Microsc. 169:339–345.PubMedCrossRefGoogle Scholar
  61. Sheppard, C.J.R., Gu, M., and Roy, M., 1992, Signal-to noise ratio in confocal microscopy systems, J. Microsc. 168:209–218.CrossRefGoogle Scholar
  62. Shotton, D.M., and White., N.S., 1989, Confocal scanning microscopy: 3-D biological imaging, Trends Biochem. Sci. 14:435–439.PubMedCrossRefGoogle Scholar
  63. Torrance, K.E., and Sparrow, E.M., 1967, Theory for off-specular reflection from roughened surfaces, Opt. Soc. Am. 57(9): 1105–1114.CrossRefGoogle Scholar
  64. Van der Voort, H.T.M., Brakenhoff, G.J., and Baarslag, M.W., 1989, Three-dimensional visualization methods for confocal microscopy, J. Microsc. 153:123–132.PubMedCrossRefGoogle Scholar
  65. VanZandt, W.L., and Argiro, V.J., 1989, A new inlook on life, UNIX Rev. 7(3):52–57.Google Scholar
  66. Visser, T.D., Groen, F.C.A., and Brakenhoff, G.J., 1991, Absorption and scaterring correction in fluorescence confocal microscopy, J. Microsc. 163:189–200.CrossRefGoogle Scholar
  67. Visser, T.D., Oud, J.L., and Brakenhoff, G.J., 1992, Refractive index and axial distance measurements in 3-D microscopy, Optik 90:17–19.Google Scholar
  68. Wallén, P., Carlsson, K., and Mossberg, K., 1992, Confocal laser scanning microscopy as a tool for studying the 3-D morphology of nerve cells. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), VCH, New York, pp. 109–143.Google Scholar
  69. Warn, D.R., 1983, Lighting controls for synthetic images, Comput. Graphics 17(3): 13–24.CrossRefGoogle Scholar
  70. Watt, A., 1989, Three Dimensional Computer Graphics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  71. Westover, L., 1990, Footprint evaluation for volume rendering, Comput. Graphics 24(4): 367–376.CrossRefGoogle Scholar
  72. Wilson, T., 1990, Confocal microscopy. In: Confocal Microscopy (T. Wilson, ed.), Academic Press, London, pp. 1–64.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • N. S. White
    • 1
  1. 1.Department of Plant SciencesOxford UniversityOxfordUK

Personalised recommendations