Photon Detectors for Confocal Microscopy

  • Jonathan Art


In its most general form, confocal microscopy encompasses all optical techniques whose illumination and detection scheme examines each point in an object in the absence of interfering information from neighboring points. Recently, confocal techniques have expanded to encompass not only morphology but disciplines as far afield as physiology, spectroscopy, fluorescence lifetime analysis, and even DNA sequencing. As a result, the requirements and design constraints on appropriate detection systems are as varied as the fields to which the technique is applied.


Quantum Efficiency Noise Source Photon Detector Photovoltaic Effect Negative Electron Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyle, W.S., and Smith, G.E., 1970, Charge coupled semiconductor devices, Bell Sys. Tech. J. 49:587–593.Google Scholar
  2. Brown, R.G.W., Ridley, K.D., and Rarity, J.G., 1986, Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive Quenching, Appl. Optics 25(22):4122–4126.CrossRefGoogle Scholar
  3. Brown, R.G.W., Jones, R., Rarity, J.G., andRidley, K.D., 1987, Characterization of silicon avalanche photodiodes for photon correlation measurements, 2: Active Quenching, Appl. Optics 26(2):2383–2389.CrossRefGoogle Scholar
  4. Burgess, R.E., 1956, The statistics of charge carrier fluctuations in semiconductors, Proc. Phys. Soc. B69:1020–1027.CrossRefGoogle Scholar
  5. Coutures, J.L., and Boucharlat, G., 1988, A 2 × 2048 Pixel bilinear CCD array for spectroscopy (TH 7832 CDZ), Adv. Electron. Electron Phys. 74:173–179.CrossRefGoogle Scholar
  6. Einstein, A., 1905, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. 17:132–148.CrossRefGoogle Scholar
  7. Fairchild, 1987, CCD Imaging and Signal Processing Catalog and Applications Handbook, Fairchild Weston Systems Inc., CCD Imaging Division, Sunnyvale, CA.Google Scholar
  8. Goldstein, S., 1989, A no-moving-parts video rate laser beam scanning type 2 confocal reflected /transmission microscope, J. Microsc. 153–2:RP1–RP2.Google Scholar
  9. Hier, R.G., Zheng, W., Beaver, E.A., Mcllwain, C.E., and Schmidt, G.W., 1988, Development of a CCD-digicon detector system, Adv. Electron. Electron Phys. 74:55–67.CrossRefGoogle Scholar
  10. Inoué, S., 1986, Video Microscopy, Plenum Press, New York.Google Scholar
  11. Jones, R., Oliver, C.J., and Pike, E.R., 1971, Experimental and theoretical comparison of photon-counting and current measurements of light intensity, Appl. Optics 10:1673–1680.CrossRefGoogle Scholar
  12. Jorgensen, T. Jr., 1948, On probability generating functions, Am. J. Phys. 16:285–289.CrossRefGoogle Scholar
  13. Kittel, C., 1986, Introduction to Solid State Physics, 6th ed., John Wiley & Sons, New York.Google Scholar
  14. Kume, H., Koyama, K., Nakatsugawa, K., Suzuki, S., and Fatlowitz, D., 1988, Ultrafast microchannel plate photomultipliers, Appl. Optics 27(6): 1170–1178.CrossRefGoogle Scholar
  15. Mackay, C.D., 1988, Cooled CCD systems for biomedical and other applications, Adv. Electron. Electron Phys. 74:129–133.CrossRefGoogle Scholar
  16. McMullan, D., 1988, Image recording in electron microscopy, Adv. Electronics and Electron Phys. 74:147–156.CrossRefGoogle Scholar
  17. Mathur, D.P., Mclntyre, R.J., and Webb, P.P., 1970, A new germanium photo-diode with extended long-wavelength response, Appl. Optics 9(8): 1842–1847.CrossRefGoogle Scholar
  18. Petráň, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandem-scanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.CrossRefGoogle Scholar
  19. Prescott, J.R., 1966, A statistical model for photomultiplier single-electron statistics, Nuclear Instrum. Methods 39:173–179.CrossRefGoogle Scholar
  20. Putley, E.H., 1977, Thermal detectors. In: Topics in Applied Physics, 19: Optical and Infrared Detectors (R.J. Keyes, ed.), Springer-Verlag, Berlin, pp. 71–100.Google Scholar
  21. RCA, 1980, Photomultiplier Handbook, RCA Solid State Division, Lancaster, PA.Google Scholar
  22. Robben, F., 1971, Noise in the measurement of light with photomultipliers, Appl. Optics 10(4):776–796.CrossRefGoogle Scholar
  23. Schwartz, M, 1970, Information Transmission, Modulation, and Noise, 2nd ed., McGraw-Hill, New York.Google Scholar
  24. Seib, D.H., and Aukerman L.W., 1973, Photodetectors for the 0.1 to 1.0 mm spectral region, Adv. Electron. Electron Phys. 34:95–221.CrossRefGoogle Scholar
  25. Sharpless, W.M., 1970, Evaluation of a specially designed GaAs Schottky-bar-rier photodiode using 6328-υ radiation modulated at 4 GHz, Appl. Optics 9(2):489–494.CrossRefGoogle Scholar
  26. Siliconix, 1986, Small-signal FET Data Book, Siliconix Inc., Santa Clara, CA.Google Scholar
  27. Van der Ziel, A., 1959, Fluctuation Phenomena in Semi-conductors, Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jonathan Art
    • 1
  1. 1.Department of Pharmacological and Physiological SciencesThe University of ChicagoChicagoUSA

Personalised recommendations