Intermediate Optics in Nipkow Disk Microscopes

  • G. S. Kino

Abstract

The confocal laser-scanning optical microscope (CLSM) has the major advantages ofyielding a very short depth of focus and of being very well suited to optical cross-sectioning. Its transverse resolution, dxy, and the contrast of the image are better than with a standard microscope, and because it uses a laser beam, the illumination intensity is very high. At the same time, a choice of illumination wavelengths is available (Wilson and Sheppard, 1984).

Keywords

Tube Length Standard Microscope Pupil Plane Transverse Resolution Pinhole Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, M. and Wolf, E., 1975, Principles of Optics, Pergamon Press, London.Google Scholar
  2. Cavanagh, H.D., Jester J.V., Essepian, J., Shields, W., and Lemp, M.A, 1990, Confocal microscopy of the living eye, CLAOJ. 16:65–73.Google Scholar
  3. Corle, T.R., Mallory, C.L., and Wasserman, T.D., 1991, Improved confocal scanning microscope, U.S. Patent 5,067,805 (Nov. 26, 1991).Google Scholar
  4. Goodman, J. W., 1968, Introduction to Fourier Optics, McGraw-Hill, New York.Google Scholar
  5. Jester, J.V., Petroll, W.M., Garana, R.M.R., Lemp, M.A., and Cavanagh, H.D., 1992, Comparison of in vivo and ex vivo cellular structure in rabbit eyes detected by tandem scanning microscopy, J. Microsc. 165:169–181.PubMedCrossRefGoogle Scholar
  6. Kino, G.S., 1987. Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  7. Kino, G.S. and Xiao, G.Q., 1990, Real-Time Scanning Optical Microscopes. In: Scanning Optical Microscopes (T. Wilson, ed.), Pergamon Press, London, pp. 361–387.Google Scholar
  8. Lichtman, J.W., Sunderland, W.J., and Wilkinson, R.S., 1989, High-resolution imaging of synaptic structure with a simple confocal microscope, New Biol. 1:75–82.PubMedGoogle Scholar
  9. Petráň, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandem scanning reflected light microscope, J. Opt. Soc. Am. 58:661–664.CrossRefGoogle Scholar
  10. Petráň, M., Hadravsky, M., and Boyde, A., 1985, The tandem scanning reflected light microscope, Scanning 7:97–108.CrossRefGoogle Scholar
  11. Wilson, T. and Sheppard, C.J.R., 1984, Scanning Optical Microscopy, Academic Press, San Diego.Google Scholar
  12. Wilson, T., and Carlini, A.R., 1987, Size of the detector in confocal imaging systems, Opt. Lett. 12:227–229.PubMedCrossRefGoogle Scholar
  13. Wilson, T., 1990, Optical aspects of confocal microscopy. In: Confocal Microscopy (T. Wilson, ed.), Pergamon Press, London, pp. 93–141.Google Scholar
  14. Xiao, G.Q., and Kino, G.S., 1987, A real-time confocal scanning optical microscope. In: Scanning Imaging Technology, Proc. SPIE Volume 809 (T. Wilson, and L. Balk, eds.), pp. 107–113.Google Scholar
  15. Xiao, G.Q., Corle, T.R., and Kino, G.S., 1988, Real-time confocal scanning optical microscope, Appl. Phys. Lett. 53:716–718.CrossRefGoogle Scholar
  16. Xiao, G.Q., Kino, G.S., and Masters, B.R., 1990, Observation of the rabbit cornea and lens with a new real-time confocal scanning optical microscope, Scanning 12:161–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. S. Kino
    • 1
  1. 1.Edward L. Ginzton LaboratoryStanford UniversityStanfordCaliforniaUSA

Personalised recommendations