Skip to main content

Branch and Bound for Global NLP: New Bounding LP

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 9))

Abstract

We present here a new method for bounding nonlinear programs which forms the foundation for a branch and bound algorithm presented in the next chapter. The bounding method is a generalization of the method proposed by Swaney [34] and is applicable to NLPs in factorable form, which include problems with quadratic objective functions and quadratic constraints as well as problems with twice differentiable transcendental functions. This class of problems is wide enough to cover many useful engineering applications including the following which have appeared in the literature: phase and chemical equilibrium problems [5, 15, 16], complex reactor networks [5], heat exchanger networks [5, 23, 38], pool blending [36, 37], and flowsheet optimization [5, 28]. Reviews of the applications of general nonlinear and bilinear programs are available in [1, 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. A. Al-Khayyal. Generalized bilinear programming: Part I. models, applications and linear programming relaxation. European Journal of Operational Research, pages 306–314, 60.

    Google Scholar 

  2. J. E. Cope and B. W. Rust. Bounds on solutions of linear systems with inaccurate data. SIAM Journal on Numerical Analysis, 16 (6): 950–963, December 1979.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Deif. Sensitivity Analysis in Linear Systems. Springer-Verlag, 1986.

    Google Scholar 

  4. J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming problems. Management Science, 15 (9): 550–569, May 1969.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

    Google Scholar 

  6. C. A. Floudas and P. M. Pardalos, editors. Recent Advances in Global Optimization. Princeton Series in Computer Science. Princeton University Press, 1992.

    Google Scholar 

  7. C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs — I. Theory. Computers and Chemical Engineering, 14 (12): 1397–1417, 1990.

    Article  Google Scholar 

  8. A. M Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10: 237–260, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, 1992.

    Google Scholar 

  10. R. Horst. Deterministic methods in constrained global optimization: Some recent advances and new fields of application. Naval Research Logistics Quarterly, 37: 433–471, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Horst and P.M. Pardalos. Handbook of Global Optimization. Kluwer, 1995.

    Google Scholar 

  12. R. Horst and H. Thy. Global Optimization, Deterministic Approaches. Springer-Verlag, 1990.

    Google Scholar 

  13. G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I — convex underestimating problems. Mathematical Programming, 10: 147–175, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. P. McCormick. Nonlinear Programming, Theory, Algorithms, and Applications. John Wiley, and Sons, 1983.

    Google Scholar 

  15. C. M. McDonald and C. A. Floudas. Decomposition based and branch and bound global optimization approaches for the phase equilibrium problem. Journal of Global Optimization, 5: 205–251, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Mfayokurera. Nonconvex phase equilibria computations by global minimization. Master’s thesis, University of Wisconsin-Madison, June 1989.

    Google Scholar 

  17. B. A. Murtagh and M. A. Saunders. MINOS 5.1 user’s guide. Technical Report SOL 83–20R, Systems Optimization Laboratory, Stanford University, Stanford, CA 94305–4022, January 1987.

    Google Scholar 

  18. A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1990.

    MATH  Google Scholar 

  19. W. Oettli. On the solution set of a linear system with inaccurate coefficients. SIAM Journal on Numerical Analysis, 2 (1): 115–118, 1965.

    MathSciNet  Google Scholar 

  20. W. Oettli, W. Prager, and J. H. Wilkinson. Admissible solutions of linear systems with not sharply defined coefficients. SIAM Journal on Numerical Analysis, 2 (2): 291–299, 1965.

    MathSciNet  Google Scholar 

  21. P. M. Pardalos. Global optimization algorithms for linearly constrained indefinite quadratic problems. Computers and Mathematics with Applications, 21 (6/7): 87–97, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algorithms and Applications, volume 268 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

    Google Scholar 

  23. I. Quesada and I. E. Grossmann. Global optimization algorithm for heat exchanger networks. Industrial Engineering and Chemical Research, 32: 487–499, 1993.

    Article  Google Scholar 

  24. I. Quesada and I. E. Grossmann. A global optimization algorithm for linear fractional and bilinear programs Journal of Global Optimization, 6: 39–76, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Ratschek and J. Rokne. New Computer Methods For Global Optimization. Mathematics and its Applications. Ellis Horwood Limited, 1988.

    Google Scholar 

  26. H. Ratschek and J. Rokne. Interval tools for global optimization. Computers and Mathematics with Applications, 21 (6/7): 41–50, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Ratschek and R. L. Voller. What can interval analysis do for global optimization? Journal of Global Optimization, 1: 111–130, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell. Engineering Optimization: Methods and Applications. John Wiley, and Sons, Inc., 1983.

    Google Scholar 

  29. H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers and Chemical Engineering, 19 (5): 551–566, 1995.

    Google Scholar 

  30. R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM Journal on Scientific and Statistical Computing, 11 (6): 1136–1158, November 1990.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear programming problems. Journal of Global Optimization, 2: 379–410, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. D. Sherali and C. H. Tbncbilek. A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. Journal of Global Optimization, 2: 101–112, 1992.

    Article  MATH  Google Scholar 

  33. R. M. Soland. An algorithm for separable nonconvex programming problems II: Nonconvex constraints. Management Science, 17 (11): 759–773, July 1971.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. E. Swaney. Global solution of algebraic nonlinear programs AIChE Annual Meeting ( Chicago, IL 1990 ). Publication pending.

    Google Scholar 

  35. R. Vaidyanathan and M. El-Halwagi. Global optimization of nonconvex nonlinear programs via interval analysis. Computers and Chemical Engineering, 18 (10): 889–897, 1994.

    Article  Google Scholar 

  36. V. Visweswaran and C. A. Floudas. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs — II. Application of theory and test problems. Computers and Chemical Engineering, 14 (12): 1419–1434, 1990.

    Article  Google Scholar 

  37. V. Visweswaran and C. A. Floudas. New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. Journal of Global Optimization, 3: 439–462, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. W. Westerberg and J. V. Shah. Assuring a global optimum by the use of an upper bound on the lower (dual) bound. Computers and Chemical Engineering, 2: 83–92, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Epperly, T.G.W., Swaney, R.E. (1996). Branch and Bound for Global NLP: New Bounding LP. In: Grossmann, I.E. (eds) Global Optimization in Engineering Design. Nonconvex Optimization and Its Applications, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5331-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5331-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4754-3

  • Online ISBN: 978-1-4757-5331-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics