Early Biochemical Effects of GM1 Ganglioside Treatment in Lesioned Brain: Dependence on Degree of Fiber Degeneration

  • Barbara Oderfeld-Nowak
  • Małgorzata Skup
  • Małgorzata Gradkowska
  • Lech Kiedrowski
Part of the FIDIA Research Series book series (FIDIA, volume 6)


Several reports show that ganglioside treatment, and especially GM1 ganglioside, facilitates various forms of long-term recovery following lesions of the brain (Agnati et al., 1984; Kojima et al., 1984; Oderfeld-Nowak et al., 1984a; b; Toffano et al., 1983; Toffano et al., 1984a; b; Wójcik et al., 1982). Enhanced recovery has been hypothesized to be due mainly to increased sprouting processes. Recently, however, several laboratories have also reported beneficial effects of GM1 treatment upon the impaired functions in an acute phase of CNS injury, (Fass and Ramirez, 1984; Karpiak and Mahadik, 1984; Sabel et al., 1984), and this fact, considering the time period, can hardly be ascribed to facilitation of sprouting. Therefore, other phenomena are probably involved. In fact, several authors pointed out some early compensatory biochemical effects of GM1 treatment after brain lesions. An increase in choline uptake in the cerebral cortex after lesion in the nucleus basalis magnocellularis (Pedata et al., 1984), an increase in dopamine uptake in the striatum following partial hemitransection (Toffano et al., 1984b), an increase of the lowered activity of Na+, K+-ATPase associated with edema (Karpiak and Mahadik, 1984; Karpiak et al., 1986), restoration of striatal energy metabolism (Fuxe et al., 1986), were reported. Hypotheses concerning the effect of ganglioside on increasing of the impulse flow, and/or enhancing biosynthetic processes (Pedata et al., 1984; Toffano et al., 1984b), and effects on restabilization of membrane properties (Janigro et al., 1984; Karpiak and Mahadik, 1984; Karpiak et al., 1986) have been advanced. We are now reporting data which indicate yet another early biochemical facilitatory effect of GM 1, namely, on post-lesion recovery of the hippocampal cholinergic and serotoninergic parameters.


Choline Uptake ChAT Activity Impulse Flow Ganglioside Treatment Fidia Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



central nervous system




acetylcholine esterase


choline acetyltransferase






nerve growth factor.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dravid AR and Van Deusen EB (1984) Brain Research 324: 119–128.PubMedCrossRefGoogle Scholar
  2. Ellman GL, Courtney KD, Anders M, Featherstone R (1961) Biochem Pharmac 7: 88–95.CrossRefGoogle Scholar
  3. Fass B and Ramirez JJ (1984) Neurosci Res 12: 445–458.CrossRefGoogle Scholar
  4. Fonnum F (1975) J Neurochem 24: 407–409.PubMedCrossRefGoogle Scholar
  5. Fuxe K, Agnati LF, Benfenati F, Zini J, Gavioli G, Toffano G (1986) This volume.Google Scholar
  6. Gage FH, Björklund A, Stenevi U (1983a) Nature 303: 819–821.PubMedCrossRefGoogle Scholar
  7. Gage FH, Björklund A, Stenevi A, Dunnett SB (1983b) Brain Research 268: 39–47.PubMedCrossRefGoogle Scholar
  8. Gage FH, Björklund A, Stenevi U (1983c) Brain Research 268: 27–37.PubMedCrossRefGoogle Scholar
  9. Gage FH, Björklund A, Stenevi V (1984) Nature 308: 637–639.PubMedCrossRefGoogle Scholar
  10. Haga T and Noda H (1973) Bioch Bioph Acta 291: 564–573.CrossRefGoogle Scholar
  11. Hefti F, Dravid A, Hartikka J (1983) Brain Research 293: 305–311.CrossRefGoogle Scholar
  12. Janigro D. Di Gregorio F, Vyskocil F, Gorio A (1984) J Neurosci Res 12: 499–509.PubMedCrossRefGoogle Scholar
  13. Karpiak SE (1983) Exp Neurol 81: 330–339.PubMedCrossRefGoogle Scholar
  14. Karpiak SE and Mahadik SP (1984) J Neurosci Res 12: 485–492.PubMedCrossRefGoogle Scholar
  15. Karpiak SE and Mahadik SP (1986). This volume.Google Scholar
  16. Kiedrowski L and Gradkowska M (1984) in: Abstracts Fifth Meeting of the European Society for Neurochemistry, Budapest, p. 161.Google Scholar
  17. Kojima H, Gorio A, Janigro D, Jonsson G (1984) Neurosci 13: 1011–1022.CrossRefGoogle Scholar
  18. Leon A, Dal Toso R, Presti D, Benvegnu D, Ferrari G, Toffano G (1986). This volume.Google Scholar
  19. Lewis PR and Shute CCD (1978) in: Iversen LL, Iversen SD and Snyder SH (eds): Handbook of Psychopharmacology, vol. 9. Plenum Press, New York, pp. 315–355.Google Scholar
  20. Lowry OH, Rosebrough JJ, Farr AL, Randall RJ (1951) J Biol Chem 193: 265–275.PubMedGoogle Scholar
  21. Nieto-Sampedro M, Manthorpe M, Barbin G, Varon S, Cotman C (1983) J Neurosci 3: 2219–2229.PubMedGoogle Scholar
  22. Oderfeld-Nowak B, Potempska A, Oderfeld J (1977) Neurosci 2: 641–648.CrossRefGoogle Scholar
  23. Oderfeld-Nowak B, Skup M, Gradkowska M, Zaremba M (1984a) in: Vizi ES and Magyar K (eds): Regulation of transmitter function: basic and clinical aspects. Proceedings of the Fifth Meeting of the European Society for Neurochemistry, Akadèmiai Kiadò, Budapest, pp. 409–412.Google Scholar
  24. Oderfeld-Nowak B, Skup M, Ulas J, Jezierska M, Gradkowska M, Zaremba M (1984b) J Neurosci Res 12: 409–420.PubMedCrossRefGoogle Scholar
  25. Oderfeld-Nowak B, Skup M, Gradkowska M, Pogorzelski A, Oderfeld J (1985) Abstracts of the Tenth Meeting of the International Society for Neurochemistry, J Neurochem 44 (Supplement), S36.Google Scholar
  26. Pedata F, Giovannelli L, Pepeu G (1984) J Neurosci Res 12: 421–427.PubMedCrossRefGoogle Scholar
  27. Presti D, Facci L, Dal Toso R, Aldinio C, Leon A (1985) in: ISN Satellite Meeting, Neuronal Plasticity and Gangliosides, Mantova, Italy, Poster Abstract P25.Google Scholar
  28. Sabel BA, Dunbar GL, Stein DG (1984) J Neurosci Res 12: 429–443.PubMedCrossRefGoogle Scholar
  29. Schonfeld AR, Heacock AM, Katzman R (1984) Brain Research 321: 377–380.PubMedCrossRefGoogle Scholar
  30. Storm-Mathisen J and Guldberg HC (1974) J Neuroschem 22: 7983–8003.Google Scholar
  31. Ternaux JP, Héry F, Bourgoin S, Adrien J, Glowinski, Hamon M (1977) Brain Research 121: 311–326.PubMedCrossRefGoogle Scholar
  32. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983) Brain Research 261: 163–166.PubMedCrossRefGoogle Scholar
  33. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1984a) Brain Research 296: 233–239.PubMedCrossRefGoogle Scholar
  34. Toffano G, Savoini G, Aporti F, Calzolari S, Consolazione A, Maura G, Marchi M, Raiteri M, Agnati LF (1984b) J Neurosci Res 12: 397–408.PubMedCrossRefGoogle Scholar
  35. Wójcik M, Ulas J, Oderfeld-Nowak B (1982) Neurosci 7, 2: 495–499.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Barbara Oderfeld-Nowak
    • 1
  • Małgorzata Skup
    • 1
  • Małgorzata Gradkowska
    • 1
  • Lech Kiedrowski
    • 1
  1. 1.Laboratory of Neurochemistry, Department of NeurophysiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland

Personalised recommendations