Ganglioside Effects on Astroglial Cells in Vitro

  • Stephen D. Skaper
  • Ritsuko Katoh-Semba
  • Laura Facci
  • Silvio Varon
Part of the FIDIA Research Series book series (FIDIA, volume 6)


It is increasingly recognized that neuronal maintenance, function and repair capabilities may depend in vivo — as they do in vitro — on the availability to the neuron of appropriate extrinsic agents. Three classes of such agents have already been recognized (Varon and Adler, 1980; 1981; Varon et al., 1984; Varon, 1985). Neuronotrophic agents are presumed to control neuronal survival and general capabilities for growth and/or function. Neurite promoting agents are specifically involved in modulating the execution of neuritic programs, i.e. the extension of axons and dendrites. Transmitter modulating agents are concerned with the choice of transmitter modalities expressed by a nerve cell. As research in this field proceeds, it will become possible to specify additional categories of neuronoactive, extrinsic agents. In vivo, as in vitro, extrinsic neuronoactive agents may occur i) free in the humoral environment (extracellular fluid, culture media), ii) anchored to interstitial structures (extracellular matrices, culture substrata), and/or iii) on the surfaces of other cells with which neurons come into contact.


Proliferative Response Astroglial Cell Stellate Morphology Exogenous Ganglioside Extrinsic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



central nervous system


peripheral nervous system





cyclic AMP

cyclic adenylic acid

cyclic GMP

cyclic guanilic acid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asou H and Brunngraber EG (1984) Neurosci Let 46: 115–118.CrossRefGoogle Scholar
  2. Ben-Ze’ev A, Farmer SR, Penman S (1980) Cell 21: 365–372.PubMedCrossRefGoogle Scholar
  3. Farmer SR, Ben-Ze’ev A, Benecke B-J, Penman S (1978) Cell 15: 627–637.PubMedCrossRefGoogle Scholar
  4. Fedoroff S, Neal J, Opas M, Kalnins VI (1984) J Neurocytol 13: 1–12.PubMedCrossRefGoogle Scholar
  5. Friedkin M, Legg A, Rozengurt E (1979) Proc Natl Acad Sci USA 76: 3909–3912.PubMedCrossRefGoogle Scholar
  6. Gorio A, Carmignoto G, Facci L, Finesso M (1980) Brain Res 197: 236–241PubMedCrossRefGoogle Scholar
  7. Gorio A, Marini P, Zanoni R (1983) Neuroscience 8: 417–429.PubMedCrossRefGoogle Scholar
  8. Karpiak SE, Vilim F, Mahadik SP (1984) Dev Neurosci 6: 127–135.CrossRefGoogle Scholar
  9. Katoh-Semba R, Facci L, Skaper SD, Varon S (1986) J Cell Physiol 126: 147–153.PubMedCrossRefGoogle Scholar
  10. Latov N, Nilaver G, Zimmermann EA, Johnson WG, Silverman AJ, Defendini R, Cote L (1979) Dev Biol 72: 381–384.PubMedCrossRefGoogle Scholar
  11. Ledeen RW (1978) J Supramol Struct 8: 1–17.PubMedCrossRefGoogle Scholar
  12. Longo FM, Selak I, Zovickian J, Manthorpe M, Varon S, U H-S (1984) Exp Neurol 84: 207–218.PubMedCrossRefGoogle Scholar
  13. Magistretti PJ, Manthorpe M, Bloom FE, Varon S (1983) Regulatory Peptides 6: 71–80.PubMedCrossRefGoogle Scholar
  14. Manthorpe M, Adler R, Varon S (1979) J Neurocytol 8: 605–621.PubMedCrossRefGoogle Scholar
  15. Manthorpe M, Nieto-Sampedro M, Skaper SD, Lewis ER, Barbin G, Longo FM, Cotman CW, Varon S (1983) Brain Res 267: 47–56.PubMedCrossRefGoogle Scholar
  16. Manthorpe M, Rudge J, Varon S (1986) In: Fedoroff S (ed): Astiocytes, Vol 2. Academic Press, New York, in press.Google Scholar
  17. McClain DA and Edelman GM (1980) Proc Natl Acad Sci USA 77: 2748–2752.PubMedCrossRefGoogle Scholar
  18. Moonen G, Heinen E, Goessens G (1976) Cell Tissue Res 167: 221–227.PubMedCrossRefGoogle Scholar
  19. Nieto-Sampedro M, Manthorpe M, Barbin G, Varon S, Cotman CW (1983) J Neurosci 3: 2219–2229.PubMedGoogle Scholar
  20. Partington CR and Daly JW (1979) Molecular Pharmacol 15: 484–491.Google Scholar
  21. Rozengurt E and Mendoza S (1980) Ann NY Acad Sci 339: 175–190.PubMedCrossRefGoogle Scholar
  22. Rudge JS, Manthorpe M, Varon S (1985) Del/ Brain Res 19: 161–172.CrossRefGoogle Scholar
  23. Sabel BA, Slovin MD, Stein DG (1984) Science 225: 340–342.PubMedCrossRefGoogle Scholar
  24. Schoffeniels E, Franck G, Hertz L, Lower D (eds) (1978) Dynamic Properties of Glial Cells, Pergamon Press, New York.Google Scholar
  25. Seifert W and Rudland PS (1974) Proc Natl Acad Sci USA 71: 4920–4924.PubMedCrossRefGoogle Scholar
  26. Skaper SD, Facci L, Rudge JS, Katoh-Semba R, Manthorpe M, Varon S (1986) Del/ Brain Res 25: 21–31.CrossRefGoogle Scholar
  27. Sparrow JR and Grafstein B (1982) Exp Neurol 77: 230–235.PubMedCrossRefGoogle Scholar
  28. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983) Brain Res 261: 163–166.PubMedCrossRefGoogle Scholar
  29. Varon S (1985) Discussions in Neurosciences, Vol. II, 3, Foundation FESN, Geneva. Varon S and Adler R (1980) Curr Topics Dev Biol 16: 207–252.Google Scholar
  30. Varon S and Adler R (1981) Adv Cell Neurobiol 2: 115–163.Google Scholar
  31. Varon S and Somjen G (1979) Neurosci Res Prog Bull 17: 1–239.Google Scholar
  32. Varon S, Manthorpe M, Williams LR (1984) Dev Neuroscience 6 (2): 73–100.CrossRefGoogle Scholar
  33. Varon S, Skaper SD, Katoh-Semba R (1986), this volume.Google Scholar
  34. Yamakawa T and Nagai Y (1978) Trends Biochem Sci 3: 128–131.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Stephen D. Skaper
    • 1
  • Ritsuko Katoh-Semba
    • 2
  • Laura Facci
    • 3
  • Silvio Varon
    • 1
  1. 1.Department of Biology, School of MedicineUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of PerinatologyInstitute for Developmental ResearchKasugi, AichiJapan
  3. 3.Laboratory of BiochemistryFidia Research LaboratoriesAbano Terme, PadovaItaly

Personalised recommendations