Ganglioside-Mediated Modulation of Growth Factor Receptor Function

  • Sen-itiroh Hakomori
  • Eric Bremer
  • Yoshio Okada
Part of the FIDIA Research Series book series (FIDIA, volume 6)


Two classes of glycosphingolipids can be distinguished in cells; one class with long and complex carbohydrates characterizes types of cells and may play an important role in cell-cell recognition (cell social function), while the other class is composed of a few basic structures, such as GM3, lactosylceramide, and glucosylceramide, common to many types of cells. The latter class of glycosphingolipids and even some of the former class may play a basic role in regulating the function of intrinsic membrane proteins such as receptors and transporters. There have been a few lines of evidence that GM3 or GM1 ganglioside may affect and modulate the function of the receptors for fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF). There is a study that has suggested a possible association of a tumor-associated glycolipid antigen (gangliotriaosylceramida, Gg3Cer) and the transferrin receptor in mouse lymphoma L5178Y. Furthermore, some data indicate that cell adhesion could be mediated by gangliosides, although much of the evidence for this possibility is still fragmentary and requires extensive further study. I will try to summarize our observations regarding the possible role of gangliosides in the regulation of receptor function.


Tyrosine Phosphorylation Fibroblast Growth Factor Receptor Transferrin Receptor PDGF Receptor Exogenous Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



fibroblast growth factor


platelet-derived growth factor


epidermal growth factor


fetal calf serum


Dulbecco modified Eagle Medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker JB, Barsh GS, Carney DH, Cunningham DD (1978) Proc Natl Acad Sci USA 75: 1881–1886.CrossRefGoogle Scholar
  2. Barnes D, Sato G (1980) Anal Biochem 102: 255–270.PubMedCrossRefGoogle Scholar
  3. Bremer EG, Hakomori S (1982) Biochem Biophys Res Commun 106: 711–718.PubMedCrossRefGoogle Scholar
  4. Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) J Biol Chem 259: 6818–6825.PubMedGoogle Scholar
  5. Bremer EG, Schlessinger J, Hakomori S (1986) J Biol Chem 261: 2434–2440.PubMedGoogle Scholar
  6. Cheresh DA, Harper JR, Schultz G, Reisfeld RA (1984) Proc Natl Acad Sci USA 81: 5767–5771.PubMedCrossRefGoogle Scholar
  7. Critchley DR, Macpherson IA (1973) Biochim Biophys Acta 296: 145–159.PubMedCrossRefGoogle Scholar
  8. Fishman PH, Simmons JL, Brady RO, Freese E (1974) Biochem Biophys Res Commun 59: 292–299.PubMedCrossRefGoogle Scholar
  9. Gahmberg CG, Hakomori S (1975) J Biol Chem 250: 2438–2446.PubMedGoogle Scholar
  10. Glenn K, Bowen-Pope DF, Ross R (1982) J Biol Chem 257: 5172–5176.PubMedGoogle Scholar
  11. Hakomori S (1970) Proc Natl Acad Sci USA 67: 1741–1747.PubMedCrossRefGoogle Scholar
  12. Keenan TW, Schmidt E, Franke WW, Wiegandt H (1975) Exp Cell Res 92: 259–270.PubMedCrossRefGoogle Scholar
  13. Kijimoto S, Hakomori S (1971) Biochem Biophys Res Commun 44: 557–563.PubMedCrossRefGoogle Scholar
  14. Kleinman HK, Martin GR, Fishman PH (1979) Proc Natl Acad Sci USA 76: 3367–3371.PubMedCrossRefGoogle Scholar
  15. Laine RA, Hakomori S (1973) Biochem Biophys Res Commun 54: 1039–1045.PubMedCrossRefGoogle Scholar
  16. Langenbach R, Kennedy S (1978) Exp Cell Res 112: 361–372.PubMedCrossRefGoogle Scholar
  17. Lingwood CA, Hakomori S (1977) Exp Cell Res 108: 385–391.PubMedCrossRefGoogle Scholar
  18. Maciag T, Kelley B, Cerundolo J, Ilsley S, Kelley PR, Gaudreau J, Forand R (1980) Cell Biol Int Report 4: 43–50.CrossRefGoogle Scholar
  19. Neufeld G, Gospodarowicz D (1985) J Biol Chem 260: 13860–13868.PubMedGoogle Scholar
  20. Okada Y, Mugnai G, Bremer EG, Hakomori S (1984) Exp Cell Res 155: 448–456.PubMedCrossRefGoogle Scholar
  21. Okada Y, Matsuura H, Hakomori S (1985) Cancer Res 45: 2793–2801.PubMedGoogle Scholar
  22. Patt LM, Itaya K, Hakomori S (1978) Nature 273: 379–381.PubMedCrossRefGoogle Scholar
  23. Pike LJ, Bowen-Pope DF, Ross R, Krebs EG (1983) J Biol Chem 258: 9383–9390.PubMedGoogle Scholar
  24. Rauvala H, Carter WG, Hakomori S (1981) J Cell Biol 88: 127–137.PubMedCrossRefGoogle Scholar
  25. Rozengurt E, Brown KD, Pettican P (1981) J Biol Chem 256: 716–722.PubMedGoogle Scholar
  26. Sakiyama H, Gross SK, Robbins PW (1972) Proc Natl Acad Sci USA 69: 872–876.PubMedCrossRefGoogle Scholar
  27. Shoyab M, Todaro GT (1981) Arch Biochem Biophys 206: 222–226.PubMedCrossRefGoogle Scholar
  28. Simmons JL, Fishman PH, Freese E, Brady RO (1975) J Cell Biol 66: 414–424. Yogeeswaran G, Hakomori S (1975) Biochemistry 14: 2151–2156.Google Scholar
  29. Young WW, Jr, MacDonald EMS, Nowinski RC, Hakomori S (1979) J Exp Med 150: 1008–1019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Sen-itiroh Hakomori
    • 1
  • Eric Bremer
    • 1
  • Yoshio Okada
    • 1
  1. 1.Program of Biochemical Oncology/Membrane Research, Fred Hutchinson Cancer Research Center and Departments of Pathobiology, Microbiology and ImmunologyUniversity of WashingtonSeattleUSA

Personalised recommendations