Skip to main content

Soil Technology and Engineering Properties of Soils

  • Chapter

Abstract

Soil, in the engineering sense, comprises all materials found in the surface layer of the earth’s crust that are loose enough to be moved by spade or shovel. Such materials are natural systems that are normally composed of solid, liquid, and gaseous phases. The solid phases are contributed by particulate matter of inorganic or organic character. The liquid phase is usually an aqueous electrolyte solution. The gaseous phase in contact and exchange with the atmosphere may have a different composition from the latter, depending on location and biologic activity within the soil. Since water and air content vary with variation in environmental conditions, soils are normally characterized by their particulate components, while the air and water contents are considered together as porosity. However, in assaying the actual physical properties of a soil system, due consideration must be given to the volume percentages of the component phases as well as to the distribution of the different phases throughout the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AASHTO is new acronym for AASHO = American Association of State Highway & Transportation Officials.

    Google Scholar 

  • AASHO Road Test (1962), Pavement Research, Report No. 5, Highway Research Board Special Report 61E.

    Google Scholar 

  • AASHTO (1970, 1986), Standard Specifications for Highway Materials and Methods of Sampling and Testing, part 1.

    Google Scholar 

  • AASHTO (1988), Manual on Subsurface Investigations.

    Google Scholar 

  • AASHTO (1987), Maintenance Manual. Amer. Association of State Highway & Transportation Officials, Washington, D.C.

    Google Scholar 

  • ACTA (1961), Research on Loess, ACTA Instituti Constructions et Architecturae Academiae Sinicae (in Chinese).

    Google Scholar 

  • Abrams, Duff A. (1918), Design of Concrete Mixtures, Bulletin, Structural Materials Laboratory, Lewis Institute, Chicago, Illinois.

    Google Scholar 

  • Aitchison, G. D. (ed.) (1965), Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, Butterworth, Australia.

    Google Scholar 

  • Al-Khafaji, A. W. N. and Andersland, O. B. (1981), Ignition test for soil organic content measurement, Journal of the Geotechnical Engineering Division, ASCE, 107, No. GT-4, pp. 465–479.

    Google Scholar 

  • Altmeyer, W. T. (1956), Discussion of paper by Holtz and Gibbs on engineering properties of expansive clays, Trans. ASCE, 121, pp. 666–669.

    Google Scholar 

  • Andersland, O. B. and Anderson, D. M. (1978), Geotechnical Engineering for Cold Regions, McGraw-Hill Book Co., New York, N.Y.

    Google Scholar 

  • Anderson, J. N. and Lade, P. V. (1981), The expansion index test, ASTM Geotechnical Testing Journal, 4, No. 2, pp. 58–67.

    Article  Google Scholar 

  • Andrews, R. E., Gawarkiewicz, J. J., and Winterkorn, H. F. (1967), Comparison of the interaction of three clay minerals with water, dimethyl sulfoxide, and dimethyl formamide, Highway Research Record, No. 209, pp. 66-78.

    Google Scholar 

  • Arman, A. (1970), Engineering classification of organic soils, Highway Research Record, No. 310, pp. 75-89.

    Google Scholar 

  • ASCE (1976), In Situ Measurement of Soil Properties, American Society of Civil Engineers, New York, N.Y., Vols. 1 and 2.

    Google Scholar 

  • ASTM (1985), 1985 Annual Books of ASTM Standards, Section 4, Construction, Volume 04.08 Soil and Rock; Building Stones.

    Google Scholar 

  • Aschenbrenner, B. C. (1956), A new method of expressing particle sphericity, Journal of Sedimentology and Petrology, 26, pp. 5–31.

    Google Scholar 

  • Atterberg, A. (1911), Die Plastizität der Tone, Int. Mitt, für Bodenkunde, I, pp. 10–43.

    Google Scholar 

  • Azzouz, A. S., Krizek, R. J., and Corotis, R. B. (1976), Regression analysis of soil compressibility, Soils and Foundations, 16, No. 2, pp. 19–29.

    Article  Google Scholar 

  • Barden, L. and Sides, G. (1971), Sample disturbance in the investigation of clay structure, Géotechnique, 21, No. 3, pp. 211–222.

    Article  Google Scholar 

  • Baver, L. D. (1940), Soil Physics, John Wiley & Sons, Inc., New York, N.Y., p. 224.

    Google Scholar 

  • Baver, L. D. (1968), The effect of organic matter on soil structure, Pontificiae Academiae Scientiarum, Scripta, Varia.

    Google Scholar 

  • Baver, L. D. and Winterkorn, H. F. (1935), Sorption of liquids by soil colloids, II: Surface behavior in the hydration of clays, Soil Science, 40, No. 5, pp. 403–419.

    Article  Google Scholar 

  • Benoit, J. and Clough, G. W. (1986), Self-boring pressuremeter tests in soft clay, Journal of Geotechnical Engineering, ASCE, 112, No. 1, pp. 60–78.

    Article  Google Scholar 

  • Beskow, G. (1935), Soil freezing and frost heaving (in Swedish), Sveriges Geol. Undersökning, No. 375, translated into English by J. O. Osterberg, Northwestern University, Evanston, Ill., 1947, p. 145.

    Google Scholar 

  • Bieniawski, Z. T. (1980), Rock classifications: state of the art and prospects for standardization, Transportation Research Record, 783, pp. 2–9.

    Google Scholar 

  • Bishop, A. W. and Henkel, D. J. (1962), The Measurement of Soil Properties in Triaxial Test, Edward Arnold, Ltd., London.

    Google Scholar 

  • Bishop, A. W. et al. (1971), A new ring shear apparatus and its application to measurement of residual strength, Géotechnique, 21, No. 4, pp. 273–328.

    Article  Google Scholar 

  • Bjerrum, L. (1954), Geotechnical properties of Norwegian Marine clays, Géotechnique, 4, No. 2, p. 49.

    Article  Google Scholar 

  • Blaser, H. D. and Scherer, O. J. (1969), Expansion of soils containing sodium sulfate caused by drop in ambient temperatures, Highway Research Board, Special Report 103.

    Google Scholar 

  • Born, M. Heisenberg, and Hund (1924), as quoted by Eucken, A. in Lehrbuch der Chemischen Physik (1930), Akademische Verlagsgesellschaft, Leipzig.

    Google Scholar 

  • Bowles, J. E. (1986), Engineering Properties of Soils and Their Measurement, McGraw-Hill Book Co., New York, N.Y.

    Google Scholar 

  • Briaud, Jean-Louis and Audibert, Jean M. E. (1986), The pressuremeter and its marine applications, ASTM STP 950.

    Google Scholar 

  • Brumund, W. F., Jonas, E., and Ladd, C. C. (1976), Estimating in-situ maximum past preconsolidation pressure of saturated clays from results of laboratory consolidometer tests, Transportation Research Board, Special Report 163, pp. 4–12.

    Google Scholar 

  • Burmister, D. M. (1951), The application of controlled test methods in consolidation testing, ASTM STP 126, p. 83.

    Google Scholar 

  • Burwash, A. L. and Wiesner, W. R. (1984), Classification of peats for geotechnical engineering purposes, Proceedings of the 3rd International Specialty Conference on Cold Regions Engineering, 2, pp. 979–998.

    Google Scholar 

  • Campanella, R. G. and Robertson, P. K. (1985), Recent developments in in-situ testing of soils, Proceedings of the 11th ICSMFE, 2, pp. 849–854.

    Google Scholar 

  • Cancelli, A. (1977), Residual shear strength and stability analysis of a landslide in fissured overconsolidated clays, Bulletin of the International Association of Engineering Geology, No. 16.

    Google Scholar 

  • Casagrande, A. (1932), The structure of clay and its importance in foundation engineering, Journal Boston Society of Civil Engineering, 19, No. 4, p. 168.

    Google Scholar 

  • Casagrande, A. (1936), The determination of the pre-consolidation load and its practical significance, Proc. 1st International Conf. on Soil Mechanics and Foundation Engineering, 3, p. 60.

    Google Scholar 

  • Casagrande, A. (1948), Classification and identification of soils, Trans. ASCE, 1948, pp. 901-992.

    Google Scholar 

  • Chaney, R. C. and Fang, H. Y. (1986), Static and dynamic properties of marine sediments: a state of the art, ASTM STP 923, pp. 74–111.

    Google Scholar 

  • Chaney, R. C. et al. (1983), Suggested test method for determination of thermal conductivity of soil by thermal-needle procedure, ASTM Geotechnical Testing Journal, 6, No. 4, pp. 220–225.

    Article  Google Scholar 

  • Chen, F. H. (1979), Foundations on Expansive Soils, Elsevier Science Publishing Co., Ltd., New York, N.Y.

    Google Scholar 

  • Chen, W. F. and Yuan, R. L. (1980), Tensile strength of concrete: double-punch test, Journal of the Structural Division, ASCE, 106, No. ST8, pp. 1673–1693.

    Google Scholar 

  • Clemence, S. P. (ed.) (1986), Use of In Situ Tests in Geotechnical Engineering, Geotechnical Special Publication No. 6. American Society of Civil Engineers, New York, N. Y.

    Google Scholar 

  • Collins, A. G. and Johnson, A. I. (eds.) (1988), Ground-water contamination, Field methods, ASTM STP 963.

    Google Scholar 

  • Cour, F. R. (1971), Inflection point method for computing C v, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 97, No. SM-5, pp. 827–831.

    Google Scholar 

  • CRRI (1976), Collected Papers on Landslides, Chinese Railway Research Institute, Lanzhou, China (in Chinese).

    Google Scholar 

  • CRRI (1979), Landslides, Vol. 2, Chinese Railway Research Institute, Lanzhou, China (in Chinese).

    Google Scholar 

  • Czeratzki, W. and Frese, H. (1958), Importance of water in the formation of soil structure, Highway Research Board, Special Report 40.

    Google Scholar 

  • De Beer, E. E. (1969), Experimental data concerning clay slopes, Proceedings of the 7th International Conf. on Soil Mechanics and Foundation Engineering, 2.

    Google Scholar 

  • Deere, D. U. (1963), Technical description of rock cores for engineering purposes, Rock Mechanics and Engineering Geology, 1, p. 18.

    Google Scholar 

  • Deere, D. U. and Patton, F. D. (1971), Slope stability in residual soils, Proceedings of the 4th Panamerican Conference of Soil Mechanics and Foundation Engineering, 1, pp. 87–170.

    Google Scholar 

  • De Mello, V. F. B. (1972), Thoughts on soil engineering applicable to residual soils, Proceedings of the 3rd Southeast Asian Conference on Soil Engineering, Hong Kong, pp. 5-34.

    Google Scholar 

  • Dismuke, T. D., Chen, W. F., and Fang, H. Y. (1972), Tensile strength of rock by the double-punch method, Rock Mechanics, Springer-Verlag, Vol. 4, pp. 79–87.

    Article  Google Scholar 

  • Donaghe, R. T., Chaney, R. C., and Silver, M. L. (1988), Advanced Triaxial Testing of Soil and Rock, ASTM STP 977.

    Google Scholar 

  • Encyclopedia Britannica (1950), Classification.

    Google Scholar 

  • Evans, J. C. and Fang, H. Y. (1988), Triaxial permeability and strength testing of contaminated soils, R. T. Donaghe, R. C. Chaney, and M. L. Silver (eds.), ASTM STP 977, pp. 387–404.

    Google Scholar 

  • Fang, H. Y. (1960), Rapid determination of liquid limit of soils by flow index method, Highway Research Board Bulletin 254, pp. 30–35.

    Google Scholar 

  • Fang, H. Y. (1969), Influence of temperature and other climatic factors on the performance of soil-pavement systems, Highway Research Board, Special Report 103, pp. 173-185.

    Google Scholar 

  • Fang, H. Y. (1980), Geotechnical properties and foundation problems of Shanghai soft clays, ASCE Convention and Exposition, Portland, Preprint 80-176, April.

    Google Scholar 

  • Fang, H. Y. (1985), Soil-pollutant interaction effects on the soil behavior and the stability of foundation structures, Environmental Geotechnics, A. A. Balkema Publisher, Rotterdam, pp. 155–163.

    Google Scholar 

  • Fang, H. Y. (ed.) (1986, 1987), Environmental Geotechnology, Proceedings of the International Symposium, Vol. 1, 1986, Vol. 2, 1987, Envo Publishing Co., Inc., Bethlehem, Pa.

    Google Scholar 

  • Fang, H. Y. (1989), Particle theory: a unified approach for analyzing soil behavior, Proceedings of the 2nd International Symposium on Environmental Geotechnology, 1, Envo Publishing Co., Inc., Bethlehem, Pa., pp. 167–194.

    Google Scholar 

  • Fang, H. Y. and Chen, W. F. (1971), New method for determination of tensile strength of soils, Highway Research Record, No. 345, pp. 62-68.

    Google Scholar 

  • Fang, H. Y. and Fernandez, J. (1981), Determination of tensile strength of soils by unconfined-penetration test, ASTM STP 740, pp. 130–144.

    Google Scholar 

  • Fang, H. Y. and Chaney, R. C. (1986), Geo-environmental and climatological conditions related to coastal structural design along the China coastline, ASTM STP 923, pp. 149–160.

    Google Scholar 

  • Fang, H. Y. and Evans, J. C. (1988), Long-term permeability tests using leachate on a compacted clayey liner material, ASTM STP 963, pp. 397–404.

    Google Scholar 

  • FAO (1968), Nomenclature used in World Soils Map, Food and Agricultural Organization UNESCO, Rome Italy.

    Google Scholar 

  • Farmer, I. W. (1968), Engineering Properties of Rocks, E. and F. N. Spon Ltd., London, p. 180.

    Google Scholar 

  • Farouki, O. T. (1966), Physical properties of granular materials with reference to thermal resistivity, Highway Research Record, No. 128, pp. 25-44.

    Google Scholar 

  • Farouki, O. T. and Winterkorn, H. F. (1964), Mechanical properties of granular systems, Highway Research Record, No. 52, pp. 10-42.

    Google Scholar 

  • Feret, R. (1892), Sur la compacite des mortiers hydrauliques, Annales des Ponts et Chaussées, Memoires et Documents, 7e Series, Tome IV, Paris, pp. 5-164.

    Google Scholar 

  • Finn, L. W. D., Byrne, P. M., and Emery, J. J. (1971), Engineering properties of a marine sediment, Proc. International Symposium on the Engineering Properties of Sea-Floor Soils and Their Geophysical Identification, Univ. of Washington, Seattle, Washington, July, pp. 110–120.

    Google Scholar 

  • Freeze, R. A. and Cherry, J. A. (1979), Groundwater, Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Fumas, C. C. (1931), Grading aggregates; I, Mathematical relations for beds of broken solids of maximum density, Industrial and Engineering Chemistry, 23, pp. 1052–1058.

    Article  Google Scholar 

  • Gao, D. Z., Wei, D. D., and Hu, Z. X. (1986), Geotechnical properties of Shanghai soils and engineering applications, ASTM STP 923, pp. 161–177.

    Google Scholar 

  • Gibbs, H. J. (1965), Paper on collapsible soils, presented at the 1965 Texas A&M International Symposium on Expansive Soils.

    Google Scholar 

  • Gidigasu, M. D. (1975), Latérite Soil Engineering, Elsevier Science Publishing Co. Ltd., New York, N.Y.

    Google Scholar 

  • Goldberg, G. D., Lovell, Jr., C. W., and Miles, R. D. (1979), Use the geotechnical data bank, Transportation Research Record 702, pp. 140–146.

    Google Scholar 

  • Goodman, R. E. (1980), Introduction to Rock Mechanics, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Graton, L. C. and Fraser, H. J. (1935), Systematic packing of spheres with particular relation to porosity and permeability, Journal of Geology, 43, pp. 785–909.

    Article  Google Scholar 

  • Gray, J. E. (1964), Method for determining particle shape of sands, National Crushed Stone Association, Washington, D.C.

    Google Scholar 

  • Gray, D. H. and Mitchell, J. K. (1967), Fundamental aspects of electroosmosis in soils, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 93, No. SM-6, pp. 209–236.

    Google Scholar 

  • Griffin, J. J., Windom, H., and Goldberg, E. D. (1968), The distribution of clay minerals in the world ocean, Deep-Sea Research, 15, pp. 433–459.

    Google Scholar 

  • Gromko, G. J. (1974), Review of expansive soils, Journal of the Geotechnical Engineering Division, ASCE, 100, No. GT-6, pp. 667–687.

    Google Scholar 

  • Henniker, J. C. and McBain, J. W. (1948), The depth of a surface zone of a liquid, Stanford Research Institute, Stanford, California.

    Google Scholar 

  • Holl, A. (1971), Bituminöse Strassen, Bauverlag Gmbh, Wiesbaden and Berlin.

    Google Scholar 

  • Holtz, W. G. and Gibbs, H. J. (1956), Engineering properties of expansive clays, Trans. ASCE, 121, pp. 641–677.

    Google Scholar 

  • Holtz, R. D. and Kovacs, W. D. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Hough, B. K. (1957), Basic Soil Engineering, The Ronald Press Co., New York, N.Y., pp. 114–115.

    Google Scholar 

  • Howard, A. K. (1984), The revised ASTM standard on the unified classification system, ASTM Geotechnical Testing Journal, 7, No. 4, pp. 216–222.

    Article  Google Scholar 

  • Howard, A. K. (1987), The revised ASTM standard on the description and identification of soils (visual-manual procedure), ASTM Geotechnical Testing Journal, 10, No. 4, pp. 229–234.

    Article  Google Scholar 

  • HRB (1958), Water and Its Conduction in Soils, International Symposium, Highway Research Board, Special Report 40.

    Google Scholar 

  • HRB (1969), Effect of Temperature and Heat on Engineering Behavior of Soils, Proceedings of an International Conference, Highway Research Board, Special Report 103.

    Google Scholar 

  • Ingram, R. L. (1953), Fissility of mudrocks, Bulletin, Geological Society of America, 64, August.

    Google Scholar 

  • Jarrett, P. M. (ed.) (1983), Testing of Peats and Organic Soils, ASTM STP 820.

    Google Scholar 

  • Jezequel, J. F. and Le Mahute, A. (1979), The Self-boring Pressuremeter Model 76 (PAF 76). User’s manual (English translation by J. Canou and M. T. Tumay, Louisiana State University).

    Google Scholar 

  • Johnson, A. I., Frobel, A. K., Cavalli, N. J., and Bernt, A. C. (eds.) (1985), Hydraulic Barriers in Soil and Rock, ASTM STP 874.

    Google Scholar 

  • Joisel, A. (1948), Crushing and fragmentation of rocks, Annales Institut Technique du Batiment et des Travaux Publics, no. 26, Paris, France.

    Google Scholar 

  • Kassiff, G., Livneh, M., and Wiseman, G. (1969), Pavements on Expansive Clays, Jerusalem Academic Press, Israel.

    Google Scholar 

  • Keil, K. (1937), see Ruckli, R. (1950), loc. cit.

    Google Scholar 

  • Kenney, T. C. (1967), Influence of mineral composition on the residual strength of natural soils, Proc. Geotechnical Conf. Oslo, 1, pp. 123–129.

    Google Scholar 

  • Kersten, M. S. (1949), Thermal properties of soils, University of Minnesota Institute of Technology Bulletin, No. 28, Minneapolis.

    Google Scholar 

  • Kézdi, Árpád (1964), Discussion of paper by Farouki and Winterkorn, Highway Research Record, 52, pp. 42–59.

    Google Scholar 

  • Khan, L. I., Pamukcu, S., and Kugelman, I. J. (1989), Electro-osmosis in fine-grained soil, Proceedings of the 2nd International Symposium on Environmental Geotechnology, 1, Envo Publishing Co. Inc., Bethlehem, Pa., pp. 39–47.

    Google Scholar 

  • Kolbuszewski, J. (1965), Sand Particles and Their Density, Lecture given to the Materials Science Club Symposium on Intensification of Particulate Materials, London, February 26.

    Google Scholar 

  • Koppula, S. D. (1981), Statistical estimation of compression index, ASTM Geotechnical Testing Journal, 4, No. 2, pp. 68–73.

    Article  Google Scholar 

  • Krumbein, W. C. (1941), Measurement and geological significance of shape and roundness of sedimentary particles, Journal of Sedimentology and Petrology, 11, No. 2, pp. 64–72.

    Google Scholar 

  • Krumbein, W. C. and Pettijohn, F. G. (1938), Manual of Sedimentary Petrography, D. Appleton-Gentury Co., New York, N.Y.

    Google Scholar 

  • Kubiena, W. L. (1938), Micropedology, Collegiate Press, Ames, Iowa.

    Google Scholar 

  • Kubiena, W. L. (1970), Micromorphological Features of Soil Geography, Rutgers University Press, New Brunswick, N.J.

    Google Scholar 

  • Kübier, G. (1963), Influence of meteorological factors on the extent of road damage caused by frost, Highway Research Board Frost Damage Symposium, Highway Report Record, No. 33.

    Google Scholar 

  • Kuenen, P. H. (1950), Marine Geology, John Wiley and Sons, Inc., New York, N.Y.; Chapman & Hall, London.

    Google Scholar 

  • Lambe, T. W. (1962), Pore pressures in a foundation clay, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 88, No. SM-2, pp. 19–47.

    Google Scholar 

  • Lambe, T. W. and Whitman, R. V. (1979), Soil Mechanics, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Landolt-Börnstein (1952), Section 3237-Bodenkunde, Astronomy & Geophysics, Springer Verlag, 3, pp. 358–368.

    Google Scholar 

  • Landva, A. O., Korpijaakko, E. O., and Pheeney, P. E. (1983), Geotechnical classification of peats and organic soils, ASTM STP 820, pp. 37–51.

    Google Scholar 

  • Lee, P. Y. and Suedkamp, R. J. (1972), Characteristics of irregularly shaped compaction curves of soils, Highway Research Record, No. 381, pp. 1-9.

    Google Scholar 

  • Lees, G. (1964), The measurement of particle shape and its influence in engineering materials, Journal, British Granite and Whinstone Federation, 4, No. 2.

    Google Scholar 

  • Liu, T. K. (1967), A review of engineering soil classification systems, Highway Research Record, No. 156, pp. 1-22.

    Google Scholar 

  • Low, P. F. (1958), Condition of water in soil systems and its response to applied force fields, Highway Research Board, Special Report 40, pp. 55-64.

    Google Scholar 

  • Low, P. F. (1961), Physical chemistry of clay-water interaction, American Society of Agronomy, 13, pp. 279–327.

    Google Scholar 

  • Low, P. F. (1968), Mineralogical data requirements in soil physical investigations, Mineralogy in Soil Science and Engineering, SSSA Spec. Pub. No. 3, Soil Science Soc. of America.

    Google Scholar 

  • Lyon Associates, Inc. (1971), Latente and Lateritic Soils and Other Problem Soils of Africa, an engineering study for Agency for International Development AID/CSD-2164.

    Google Scholar 

  • MacFarlane, I. C. (1958), Guide to a field description of Muskeg, Technical Memorandum 44, Associate Committee on Soil and Snow Mechanics, National Research Council of Canada, Ottawa.

    Google Scholar 

  • MacFarlane, I. C. (ed.) (1969), Muskeg Engineering Handbook, University of Toronto Press.

    Google Scholar 

  • McManis, K. L., Ferrell, Jr., R. E., and Arman, A. (1983), Interpreting the physical properties of a clay using microanalysis techniques, ASTM Geotechnical Testing Journal, 6, No. 2, pp. 87–92.

    Article  Google Scholar 

  • Marshall, C. E. (1930), A new method of determining the distribution curve of polydisperse colloidal systems, Proc. Roy. Soc, 26A.

    Google Scholar 

  • Marshall, T. J. (1959), Relations between water and soil, Technical Communication No. 50, Commonwealth Bureau of Soils, Harpenden, England.

    Google Scholar 

  • Martin, R. E. (1977), Estimating foundation settlements in residual soils, Journal of the Geotechnical Engineering Division, ASCE, 103, No. GT-3, pp. 197–212.

    Google Scholar 

  • Mead, W. J. (1936), Engineering geology of damsites, Transactions, 2nd International Congress on Large Dams, Washington, D.C., 4, p. 183.

    Google Scholar 

  • Meyerhof, G. G. (1956), Penetration tests and bearing capacity of cohesionless soils, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 82, No. SM-1, pp. 866–1 to 866-19.

    Google Scholar 

  • Michalowski, R. L. (ed.) (1989), Cold Regions Engineering, ASCE Publication No. 680.

    Google Scholar 

  • Mikuni, E. (1980), Rockfill dams in Japan, Geotechnical Engineering, 11, No. 2, pp. 93–133.

    Google Scholar 

  • Mitchell, J. K. and Kao, T. C. (1978), Measurement of soil thermal resistivity, Journal of the Geotechnical Engineering Division, ASCE, 104, No. GT-10, pp. 1307–1320.

    Google Scholar 

  • M.O.P. Ministerios das Obras Publicas e do Ultramar (1959), As latérites do Ultramar Portugues, Memoria No. 141, Laboratorio Nacional de Engenharia Civil, Lisboa.

    Google Scholar 

  • Mogami, T. (1967), Mechanics of granular material composed of particles of various sizes, Japanese Society of Civil Engineers, No. 137.

    Google Scholar 

  • Mohr, E. C. J. and Van Baren, F. A. (1954), Tropical Soils, Interscience Publishers, New York, N.Y.

    Google Scholar 

  • Muller, S. W. (1947), Permafrost and Related Engineering Problems, Edwards Bros. Inc., Ann Arbor, Michigan.

    Google Scholar 

  • Nascimento, U., De Castro, E., and Rodrigues, M. (1964), Swelling and Petrifaction of Laterite Soils, Technical Paper no. 215, Laboratorio Nacional de Engenharia Civil Ministerio das Obras Publicas, Lisbon, Portugal.

    Google Scholar 

  • Naylor, A. H. and Doran, I. G. (1948), Precise determination of primary consolidation, Proc. 2nd International Conf. on Soil Mechanics and Foundation Engineering, 1, p. 34.

    Google Scholar 

  • NCSA (1972), National Crushed Stone Assoc., RETS Digest, April.

    Google Scholar 

  • Noorany, I. and Gizienski, S. F. (1970), Engineering properties of submarine soils, State-of-Art Review, Journal of Soil Mechanics and Foundation Division, Proc. ASCE, Sept., pp. 1735-1762.

    Google Scholar 

  • O’Neill, M. W. and Poormoayed, N. (1980), Methodology for foundations on expansive clays, Journal of the Geotechnical Engineering Division, ASCE, 106, No. GT-12, pp. 1345–1367.

    Google Scholar 

  • Osipov, V. I. (1983), Methods of studying clay microstructure, ASTM Geotechnical Testing Journal, 6, No. 1, pp. 10–17.

    Article  Google Scholar 

  • Pallmann, H. (1930), Doctoral dissertation ETH Zürich, Kolloid Beihefte, 30, p. 344.

    Google Scholar 

  • Pamukcu, S. and Fang, H. Y. (1989), Development of a chart for preliminary assessments in pavement design using some in situ soil parameters, Transportation Research Record, No. 1235, pp. 38-44.

    Google Scholar 

  • PCA (1973), Soil Primer, Portland Cement Association, Skokie, Ill.

    Google Scholar 

  • Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1974), Foundation Engineering, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Pereira Dos Santos, M. P. (1955), Prediction of consistency limits of soils and soil mixtures, Highway Research Board, Bulletin 108, pp. 67–74.

    Google Scholar 

  • Perry, E. B. (1975), Piping in earth dams constructed of dispersive clay: Literature review and design of laboratory tests, Technical Report S-75-15, US Army Engineer Waterways Experiment Station.

    Google Scholar 

  • Phukan, A. (1985), Frozen Ground Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Powers, J. P. (1981), Construction DewateringA Guide to Theory and Practice, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Radhakrishna, H. S., Lau, K. C., and Crawford, A. M. (1984), Coupled heat and moisture flow through soils, Journal of Geotechnical Engineering, ASCE, 110, No. 12, pp. 1766–1784.

    Article  Google Scholar 

  • Ramiah, B. K., Dayalu, N. K., and Purushothamaraj, P. (1970), Influence of chemicals on residual strength of silty clay, Soils and Foundations, X, No. 1, March, pp. 25–36.

    Article  Google Scholar 

  • Rankama, K. and Sahama, Th. G. (1950), Geochemistry, The University of Chicago Press, Chicago, Ill., p. 130.

    Google Scholar 

  • Rendon-Herrero, O. (1980), Universal compression index equation, Journal of the Geotechnical Engineering Division, ASCE, 106, No. GT-11, pp. 1179–1200.

    Google Scholar 

  • Reno, W. H. and Winterkorn, H. F. (1967), The thermal conductivity of kaolinite clay as a function of type of exchange ions, density and moisture content, Highway Research Record, No. 209, pp. 79-85.

    Google Scholar 

  • Reuss, F. F. (1809), Sur un nouvel effet de l’électricité galvanique, Proc. of the Imperial Russian Naturalist Society, Moscow, 2, pp. 327–337.

    Google Scholar 

  • Richards, A. F. (1988), Vane shear strength testing in soils: Field and laboratory studies, ASTM STP 1014.

    Google Scholar 

  • Richards, L. A. (ed.) (1947), The Diagnosis and Improvement of Saline and Alkali Soils, U.S. Regional Salinity Laboratory, Riverside, Calif., U.S. Department of Agriculture.

    Google Scholar 

  • Ring, G. W. III (1966), Shrink swell potential of soils, Highway Research Record, No. 119.

    Google Scholar 

  • Rittinger, V. (1867), Testing Sieves and Their Uses, Handbook 53 (1967), W. S. Tyler Co., Mentor, Ohio.

    Google Scholar 

  • Rodenbush, W. H. and Buswell, A. M. (1958), Properties of water substance, Highway Research Board, Special Report 40.

    Google Scholar 

  • Rothfuchs, G. (1935), How to obtain densest possible asphaltic and bituminous mixtures (in German), Bitumen, 3, March.

    Google Scholar 

  • Ruckli, R. (1950), Der Frost im Baugrund, Springer Verlag, Wien, Austria.

    Google Scholar 

  • Ruiz, C. L. (1962), Osmotic interpretation of the swelling of expansive soils, Highway Research Board Bulletin 313 (also: Publication no. 24 Direccion de Vialidad, Provincia de Buenos Aires).

    Google Scholar 

  • Russell, E. W. (1934), The interaction of clay with water and organic liquids as measured by specific volume changes and its relation to the phenomena of crumb formation in soils, Philosophical Transactions, Royal Society of London, Series A, 233, pp. 361–389.

    Google Scholar 

  • Saada, A. S. and Townsend, F. C. (1981), State of the art: laboratory strength testing of soils, ASTM STP 740, pp. 7–77.

    Google Scholar 

  • Salomone, L. A. and Kovacs, W. D. (1984), Thermal resistivity of soils, Journal of the Geotechnical Engineering Division, ASCE, 110, No. 3, pp. 375–389.

    Article  Google Scholar 

  • Sanglerat, G. (1972), The Penetrometer and Soil Exploration, Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Schmertmann, J. M. (1955), The undisturbed consolidation of clay, Trans. ASCE, 120, p. 1201.

    Google Scholar 

  • Schmertmann, J. H. (1978), Guidelines for cone penetration test, performance and design, US Department of Transportation, Federal Highway Administration Report No. FHWA-TS-78-209.

    Google Scholar 

  • Schmertmann, J. H. (1986), Suggested method for performing the flat dilatometer test, ASTM Geotechnical Testing Journal, 9, No. 2, pp. 93–101.

    Article  Google Scholar 

  • Schmidt, T. J. and Gould, J. P. (1968), Consolidation properties of an organic clay determined from field observations, Highway Research Record, No. 243, pp. 38-48.

    Google Scholar 

  • Seed, H. B., Woodward, R. J., and Lundgren, R. (1962), Prediction of swelling potential for compacted clays, Journal Soil Mechanics and Foundations Division, Proc. ASCE, 88, No. SM-3, pp. 53–87.

    Google Scholar 

  • Seed, H. B., Mitchell, J. K., and Chan, C. K. (1962), Studies of swell and swell pressure characteristics of compacted clays, Highway Research Board Bulletin 313, pp. 12–39.

    Google Scholar 

  • Segall, B. A., O’Bannon, C. E., and Jubson, A. M. (1980), Electro-osmosis chemistry and water quality, Journal of Geotechnical Engineering Division, ASCE, 106, No. GT-10, pp. 1148–1152.

    Google Scholar 

  • Serafim, J. L. and Del Campo, A. (1965), Interstitial pressures on rock foundations of dams, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 91, No. SM-5, September, pp. 66.

    Google Scholar 

  • Sheeler, J. B. (1968), Summarization and comparison of engineering properties of loess in the United States, Highway Research Record, No. 212, pp. 1-9.

    Google Scholar 

  • Sherard, J. L. and Decker, R. S. (eds.) (1977), Dispersive Clays, Related Piping and Erosion in Geotechnical Projects, ASTM STP 623.

    Google Scholar 

  • Sherman, G. D. (1952), The genesis and morphology of the alumina-rich latérite clays, Am. Inst. Min., Met. and Pet. Eng., N.Y., pp. 154-161.

    Google Scholar 

  • Shockley, W. G. (1978), Suggested practice for description of frozen soils (visual-manual procedure), ASTM Geotechnical Testing Journal, 1, No. 4, pp. 228–233.

    Article  Google Scholar 

  • Skempton, A. W. (1953), Soil mechanics in relation to geology, Proc. of the Yorkshire Geological Society, 29, Part 1, No. 3, pp. 33–62.

    Article  Google Scholar 

  • Skempton, A. W. (1954), The pore pressure coefficients A and B, Géotechnique, 4, No. 4, pp. 143–147.

    Article  Google Scholar 

  • Skempton, A. W. (1964), Long-term stability of clay slopes, Géotechnique, XIV, No. 2, pp. 77–101.

    Article  Google Scholar 

  • Skempton, A. W. and Northey, R. D. (1952), The sensitivity of clays, Géotechnique, 3, No. 1, pp. 30–53.

    Article  Google Scholar 

  • Soil Mechanics for Road Engineers (1952), Road Research Laboratory, Her Majesty’s Stationary Office, London.

    Google Scholar 

  • SSSA, Soil Science Society of America (1970), Glossary of Soil Science Terms, SSSA, 677 South Segoe Road, Madison, Wis.

    Google Scholar 

  • SSSA (1972), Soil Water, Soil Science Society of America, Madison, Wis.

    Google Scholar 

  • Taber, S. (1929), Frost heaving, Journal of Geology, 38, pp. 429–461.

    Google Scholar 

  • Taber, S. (1930), Freezing and thawing of soils as factors in the destruction of road pavements, Public Roads, 11, pp. 113–132.

    Google Scholar 

  • Taylor, D. W. (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Terzaghi, K. (1944), Ends and means in soil mechanics, Engineering Journal (Canada), 27, p. 608.

    Google Scholar 

  • Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  • Teves, A. S. and Moh, Z. C. (1968), Compressibility of soft and medium Bangkok clays, Research Report No. 4, Asian Institute of Technology, Thailand, p. 117.

    Google Scholar 

  • Thompson, D’A. W. (1942), Growth and Form, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Thorp, J. and Smith, G. D. (1949), Higher categories of soil classification, Order, suborder, and great soil groups, Soil Science, 67, pp. 117–126.

    Article  Google Scholar 

  • Tianjin University, Harbin Architectural Engineering Institute, Xian Institute of Metallurgy and Construction and Chongqing Architectural Engineering Institute (1978), Soil Mechanics and Foundation Engineering, Chinese Construction Publishing Co., Beijing, China (in Chinese).

    Google Scholar 

  • Townsend, F. C. (1985), Geotechnical characteristics of residual soils, Journal of Geotechnical Engineering, ASCE, 111, No. 1, pp. 77–94.

    Article  Google Scholar 

  • Townsend, F. C. and Gilbert, P. A. (1973), Tests to measure residual strength of some clay shales, Géotechnique, 23, No. 2, pp. 267–271.

    Article  Google Scholar 

  • TRB (1981 ), Shales and Swelling Soils, Transportation Research Record 790.

    Google Scholar 

  • TRB (1982), Overconsolidated Clays: Shales, Transportation Research Record 873.

    Google Scholar 

  • TRB (1985), Evaluation and Control of Expansive Soils, Transportation Research Record 1032.

    Google Scholar 

  • Tuncan, M., Pamukcu, S., and Hu, Z. X. (1989), Development of multipurpose triaxial apparatus for testing of soils undercoupled influence of thermal-chemical-hydraulic and electrical potential, Proceedings of the 2nd International Symposium on Environmental Geotechnology, Envo Publishing Co., Inc., Bethlehem, Pa., pp. 111–123.

    Google Scholar 

  • Tyler, W. S., Inc. (1970), Testing Sieves and Their Use, Handbook 53, Mentor, Ohio.

    Google Scholar 

  • U.S. Bureau of Reclamation (1973), Earth Manual, Federal Center, Denver, Colo.

    Google Scholar 

  • USDA (1938), Soils and Man, Yearbook of Agriculture, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  • USDA (1960), Soil Classification (a Comprehensive System), 7th Approximation, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Ueshita, K. and Nonogaki, K. (1971), Classification of coarse soils based on engineering properties, Soils and Foundations, 11, No. 3, pp. 91–111, Japan.

    Article  Google Scholar 

  • Underwood, L. B. (1967), Classification and identification of shales, Journal of the Soil Mechanics and Foundations Division, Proc. ASCE, 93, No. SM-6, pp. 97–116.

    Google Scholar 

  • Vallerga, B. A. and Van Til, C. J. (1970), Classification and engineering properties of lateritic materials, Highway Research Record, No. 310, pp. 52-67.

    Google Scholar 

  • Van Rooyen, M. and Winterkorn, H. F. (1957), Theoretical and practical aspects of the thermal conductivity of soils, Highway Research Board Bulletin 168, pp. 143–205.

    Google Scholar 

  • Van Rooyen, M. and Winterkorn, H. F. (1959), Structural and textural influences on the thermal conductivity of soils, Proc. Highway Research Board, 38, pp. 576–621.

    Google Scholar 

  • Vees, E. and Winterkorn, H. F. (1967), Engineering properties of several pure clays as functions of mineral type, exchange ions and phase composition, Highway Research Record, No. 209, pp. 55-65.

    Google Scholar 

  • Voight, B. (1973), Correlation between Atterberg plasticity limits and residual shear strength of natural soils, Géotechnique, 23, No. 2, pp. 265–267.

    Article  Google Scholar 

  • Wadell, H. (1932), Volume, shape and roundness of rock particles, Journal of Geology, 40, pp. 443–451.

    Article  Google Scholar 

  • Wadell, H. (1935), Volume, shape and roundness of quartz pebbles, Journal of Geology, 43, pp. 250–280.

    Article  Google Scholar 

  • Waidelich, W. C. (1958), Influence of liquid and clay mineral type on consolidation of clay-liquid systems, Highway Research Board, Special Report 40, pp. 24–42.

    Google Scholar 

  • Waksman, S. A. and Hutchings, I. J. (1935), Chemical nature of organic matter in different soil types, Soil Science, 40, pp. 347–363.

    Article  Google Scholar 

  • Washburn, A. L. (1969), Weathering, Frost Action, and Patterned Ground in the Mesters Vig District, Northeast Greenland, Kobenhaven, CA., Reitzels Forlag.

    Google Scholar 

  • White, H. E. and Walton, S. F. (1937), Particle packing and particle shape, Journal American Ceramic Society, 20, pp. 155–166.

    Article  Google Scholar 

  • Webb, D. L. (1969), Residual strength in conventional triaxial tests, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1.

    Google Scholar 

  • Williamson, D. A. (1980), Uniform rock classification for geotechnical engineering purposes, Transportation Research Record, 783, pp. 9–14.

    Google Scholar 

  • Winterkorn, H. F. (1936), Studies on the surface behavior of bentonites and clays, Soil Science, 41, No. 1, pp. 25–32

    Article  Google Scholar 

  • Winterkorn, H. F. (1942), Mechanism of water attack on dry cohesive soil systems, Soil Science, 54, pp. 259–273.

    Article  Google Scholar 

  • Winterkorn, H. F. (1947), Fundamental similarities between electro-osmosis and thermoosmosis, Proc. Highway Research Board, 27, pp. 443–455.

    Google Scholar 

  • Winterkorn, H. F. (1948), Engineering uses and limitations of pedology for regional exploration of soils, Proc. 2nd Int. Conf. Soil Mechanics and Foundations Engineering, 1, Rotterdam, Netherlands.

    Google Scholar 

  • Winterkorn, H. F. (1953), Macromeritic Liquids, Symposium on Dynamic Testing of Soils, ASTM Special Technical Publication No. 156, pp. 77-89.

    Google Scholar 

  • Winterkorn, H. F. (1955), Water movement through porous hydrophilic systems under capillary, electric and thermal potentials, ASTM STP 163, pp. 27–35.

    Google Scholar 

  • Winterkorn, H. F. (1961), The behavior of moist clay soil in a thermal energy field, Proc. 9th National Clay Symposium, Clay and Clay Minerals, Pergamon Press, New York, N.Y.

    Google Scholar 

  • Winterkorn, H. F. (1967), Application of granulometric principles for optimization of strength and permeability of granular drainage structures, Highway Research Record, No. 203, pp. 1-7.

    Google Scholar 

  • Winterkorn, H. F. (1971), Analogies between macrometric and molecular liquids, and the mechanical properties of sand and gravel assemblies, Chemical Dynamics (papers in honor of Henry Eyring), Wiley-Interscience, New York, N.Y.

    Google Scholar 

  • Winterkorn, H. F. and Baver, L. D. (1934), Sorption of liquids by soil colloids, I, Soil Science, 38, No. 4.

    Google Scholar 

  • Winterkorn, H. F. and Eckert, G. W. (1940), Consistency and physicochemical data of a loess pampeano soil, I & II, Soil Science, 49, pp. 73–82, and pp. 479-488.

    Article  Google Scholar 

  • Winterkorn, H. F. and Tschebotarioff, G. P. (1947), Sensitivity of clay to remolding and its possible causes, Proc. Highway Research Board, 27, pp. 432–435.

    Google Scholar 

  • Winterkorn, H. F. and Choudhury, A. N. D. (1949), Importance of volume relationships in soil stabilization, Proc. Highway Research Board, 29, pp. 553–560.

    Google Scholar 

  • Winterkorn, H. F. and Chandrasekharan, E. C. (1951), Laterite soils and their stabilization, Highway Research Board Bulletin 44, pp. 10–29.

    Google Scholar 

  • Winterkorn, H. F. and Fang, H. Y. (1970), Mechanical resistance properties of ocean floors and beaches in light of the theory of macromeritic liquids, Proc. Inter Ocean 70, Düsseldorf, 2, pp. 43–46.

    Google Scholar 

  • Winterkorn, H. F. and Fang, H. Y. (1975), Soil technology and engineering properties of soils, Foundation Engineering Handbook, Chapter 2, Van Nostrand Reinhold Co., Inc., New York, N. Y., pp. 67–120.

    Google Scholar 

  • Winterkorn, H. F. and Fang, H. Y. (1976), Engineering properties of some problematic soils and rocks, Analysis and Design of Building Foundations, Chapter 2, Envo Publishing Co., Inc., Bethlehem, Pa., pp. 17–36.

    Google Scholar 

  • Woods, R. D. (ed.) (1987), Geotechnical Practice for Waste Disposal, ASCE Geotechnical Special Publication No. 13.

    Google Scholar 

  • Woodward-Clyde & Associates (1967), Expansive Clay Soils, prepared for Portland Cement Association, Los Angeles, Calif.

    Google Scholar 

  • Wooltorton, F. L. D. (1950), Movements in the desiccated alkaline soils of Burma, Proc. ASCE, 116, January.

    Google Scholar 

  • Wu, T. H. (1966), Soil Mechanics, Allyn and Bacon, Inc., Boston, p. 431.

    Google Scholar 

  • Yamanouchi, T. (ed.) (1977), Engineering Problems of Organic Soils in Japan, Research Committee on Organic Soils, Japanese Society of Soil Mechanics and Foundation Engineering.

    Google Scholar 

  • Yong, R. N. and Townsend, F. C. (1981), Symposium on Laboratory Shear Strength of Soil, ASTM STP 740.

    Google Scholar 

  • Zingg, Th. (1935), Beitrag zur Schotteranalyse, Schweizer. min. pet. Mitt., 15, p. 39–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winterkorn, H.F., Fang, HY. (1991). Soil Technology and Engineering Properties of Soils. In: Fang, HY. (eds) Foundation Engineering Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5271-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5271-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5273-1

  • Online ISBN: 978-1-4757-5271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics