Advertisement

Ground Anchors and Soil Nails in Retaining Structures

  • Ilan Juran
  • Victor Elias
Chapter

Abstract

Ground anchor and soil nail retaining systems are designed to stabilize and support natural and engineered structures and to restrain their movement using tension-resisting elements. The basic design concept consists of transferring the resisting tensile forces generated in the inclusions into the ground through the friction (or adhesion) mobilized at the interfaces. These systems allow the engineer to efficiently use the in-situ ground in providing vertical or lateral structural support. They present significant technical advantages over conventional rigid gravity retaining walls or external bracing systems that result in substantial cost savings and reduced construction period. Therefore, during the past few decades, ground anchors, and more recently soil nails, have been increasingly used in civil engineering projects.

Keywords

Earth Pressure Diaphragm Wall Sheet Pile Bond Zone Soil Nail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mosawe, M. M. (1979), The effect of repeated and alternating loads on the behavior of dead and prestressed anchors in sand, Thesis, University of Sheffield, England.Google Scholar
  2. Andreadis, A., Harvey, R. C., and Burley, E. (1978), Embedment anchors subjected to repeated and alternating loads, Ground Engineering, 11, No. 3.Google Scholar
  3. Baguelin, F., Jezequel, J. F., and Shields, D. H. (1978), The Pressuremeter and Foundation Engineering, Trans Tech Publications, Clausthal, Germany.Google Scholar
  4. Barla, G. and Mascardi, C. (1974), High anchored wall in Genoa, Conference on Diaphragm Walls and Anchorages, Institute of Civil Engineers, London, pp. 123–128.Google Scholar
  5. Bassett, R. H. (1977), Underreamed ground anchors, Specialty session No. 4, Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp. 11-17.Google Scholar
  6. Begemann (1973), Alternating loads and pulling tests on steel I-beam piles, Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, 2.1, pp. 13-17.Google Scholar
  7. Bishop, A. W. (1966), The strength of soils as engineering materials, Geotechnique, 16, pp. 91–128.CrossRefGoogle Scholar
  8. Blondeau, F., Christiansen, M., Guilloux, A., and Schlosser, F. (1984), TALREN: methode de calcul des ouvrages en tere renforcee, Proceedings of the International Conference on In-situ Soil and Rock Reinforcements, Paris, pp. 219-224.Google Scholar
  9. Briaud, J. L., Smith, T., and Meyer, B. (1983), Pressuremeter gives elementary model for laterally loaded piles, International Symposium on In-situ Testing, Paris, 2, pp. 217–221.Google Scholar
  10. British Standards Institute (1980), October 1980 Draft British Code of Practice for Ground Anchors, DSB 22 Committee.Google Scholar
  11. Broms, B. B. (1968), Swedish tieback system for sheet pile walls, Proceedings of the 3d Budapest Conference on Soil Mechanics and Foundation Engineering, pp. 391-403.Google Scholar
  12. Bureau Securitas (1977), Recommendations Concerning the Concepts, the Calculation, the Execution, and the Control of Ground Anchors, T.A. 77, Editions Eyrolles, 61, Boulevard Saint-Germain 75005, Paris.Google Scholar
  13. Bustamante, M. (1972), Essais pre’alables de tirants precontraints definitifs pour la rive gauche de la Seine, Pont de Saint-Cloud-Pont de Sevres, Travaux, No. 450.Google Scholar
  14. Bustamente, M. (1975), Mesure des elongations dans les pieux et tirants a l’aide d’extensometres amovibles, Travaux, No. 489.Google Scholar
  15. Bustamante, M. (1976), Essais de pieux de haute capacite scelles par injection sous haute pression, Proceedings of the 6th European Conference on Soil Mechanics and Foundation Engineering, Vienna.Google Scholar
  16. Bustamante, M. (1980), Capacité d’ancrage et comportement des tirants injectes, scelles dans une argile plastique, Thèse docteur-ingenieur ENPC, Paris.Google Scholar
  17. Bustamante, M., Delmas, F., and Lacour, J. (1977), Behavior of prestressed anchors in plastic clay, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Special Session No. 4, Tokyo.Google Scholar
  18. Bustamante, M., Delmas, F., and Lacour, J. (1978), Comportement de tirants preconstraints dans une argile plastique, Revue Française de Geotechnique, 3.Google Scholar
  19. Bustamante, M. and Doix, B. (1985), Une méthode pour le calcul des tirants et des micropieux injectes, Bulletin de liaison des Laboratoires des Ponts et Chaussees, No. 140.Google Scholar
  20. Cartier, G. and Gigan, J. P. (1983), Experiments and observations on soil nailing structures, Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Finland.Google Scholar
  21. Cheney, R. S. (1984), Permanent Ground Anchors, Federal Highway Administration Report No. FHWA-DP-68-1R.Google Scholar
  22. Clement, P. and Navarro, M. (1972), Les tirants en terrain meuble type TM, Travaux, No. 450.Google Scholar
  23. Clough, G. W. (1975), Deep excavations and retaining structures, Proceedings of the Conference on Foundations of Tall Buildings, Lehigh University.Google Scholar
  24. Clough, G. W. and Tsui, Y. (1974), Performance of tied-back walls in clay, Journal of the Geotechnical Engineering Division, ASCE, 100, No. GT-12, pp. 1259–1273.Google Scholar
  25. Clough, G. W., Weber, P. R., and Lamont, J. (1974), Design and observations of a tied back wall, Proceedings of the Specialty Conference on Performance of Earth and Earth Supported Structures, ASCE, Purdue, 2, pp. 1367-1389.Google Scholar
  26. Coyle, M. M. and Reese, L. C. (1966), Load transfer for axially loaded piles in clay, Journal of the Soil Mechanics and Foundations Division, ASCE, 92, No. SM-2, pp. 1–26.Google Scholar
  27. Darbin, M., Jailloux, J. M., and Montuelle, J. (1978), Performance and research on the durability of reinforced earth reinforcing strips, ASCE Symposium on Earth Reinforcement, Pittsburgh, Pa., pp. 305-333.Google Scholar
  28. Davis, A. and Plumelle, C. (1982), Identification et étude des parametres controlant le comportement des tirants d’ancrage dans un sable fin, Annales de ITBTP, No. 401.Google Scholar
  29. DIN (1972, 1976), Deutsche Industrie Norm, Soil and Rock Anchors: Temporary Soil Anchors, Analysis, Structural Design and Testing, DIN 4125, Part 1, pp. 1-9, 1972; Part 2, pp. 1-9, 1976.Google Scholar
  30. Edgers, L., Ladd, C. C., and Christian, J. T. (1973), Undrained Creep of Atchafalaya Levee Foundation Clays, Vol. 1, Report R73-16, Soils Publication 319, Department of Civil Engineering, MIT.Google Scholar
  31. Egger, P. (1972), Influence of wall stiffness and anchor prestressing on earth pressure distributions, Proceedings of the 5th European Conference on Soil Mechanics and Foundation Engineering, Madrid, 1, pp. 259-264.Google Scholar
  32. Elias, V. and Juran, I. (1988), Draft Manual of Practice for Soil Nailing, prepared for U.S. Department of Transportation, FHWA, Contract DTFH-61-85-C-00142.Google Scholar
  33. Evans, R. H. (1955), Application of prestressed concrete to water supply and drainage, Public Health Engineering Division Meeting, Public Health Paper No. 12, London.Google Scholar
  34. Feddersen, I. (1974), Verpessanker in Lockergestein (Grouted Anchors in Soils), Bauingenieur, 49, No. 8, pp. 302–310.Google Scholar
  35. FIP (1974), Federation Internationale de la Précontrainte, Ground Anchors, Proceedings of the 7th Congress of the FIP, New York, pp. 33-42.Google Scholar
  36. Frank, R., Guenot, A., and Humbert, P. (1982), Numerical analysis of contact in geomechanics, Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Edmonton.Google Scholar
  37. Fujita, K., Ueda, K., and Kusabuka, M. (1977), A method to predict the load-displacement relationship of ground anchors, Specialty Session No. 4, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo.Google Scholar
  38. Gassier, G. and Gudehus, G. (1981), Soil nailing: Some mechanical aspects of in situ reinforced earth, Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 3, pp. 665-670.Google Scholar
  39. Goldberg, D. T., Jawouski, W. E., and Gordon, M. D. (1976), Lateral Support Systems and Underpinning, Construction Method, Final Report No. FHWA-RD-75-130.Google Scholar
  40. Guilloux, Notte and Gonin (1983), Experience on a retaining structure by nailing, Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Finland.Google Scholar
  41. Guilloux, A. and Schlosser, F. (1984), Soil nailing: Practical applications, Proceedings of the Symposium on Soil and Rock Improvement Techniques, AIT, Bangkok.Google Scholar
  42. Hanna, T. H. (1982), Foundations in Tension, Trans Tech Publications, Series on Rock and Soil Mechanics, Vol. 6.Google Scholar
  43. Hanna, T. H., Sivapalon, E., and Senturk, A. (1978), The behavior of dead anchors subjected to repeated and alternating loads, Ground Engineering, 11, No. 3.Google Scholar
  44. Hovart, C. and Rami, R. (1975), Elargissement de l’emprise SNCF pour la desserte de Saint-Quentin-en-Yvelines, Revue Travaux.Google Scholar
  45. Jones, D. A. and Turner, M. J. (1980), Load tests on post-grouted micropiles in London clay, Ground Engineering, 6, No. 13.Google Scholar
  46. Jones, D. A. and Spencer, I. M. (1984), Clay anchors: A Caribbean case history, Ground Engineering, 17, No. 1.Google Scholar
  47. Jones, N. C. and Kerkhoff, G. O. (1961), Beleld caissons anchor walls as Michigan remolds an expressway, Engineering News Record, pp. 28-31,195-197.Google Scholar
  48. Jorge, G. R. (1969), The regroutable IRP anchorage for soft soils, low capacity or karstic rocks, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Specialty Session No. 14 and 15, pp. 159-163.Google Scholar
  49. Jorge, J. (1970), Le tirant IRP reinjectable pour terrains meubles, karstiques, ou a faibles caracteristiques geotechniques, Proceedings of the 2d International Congress on Rock Mechanics, Mexico.Google Scholar
  50. Juran, I., Beech, J., and Delaure, E. (1984), Experimental study of the behavior of nailed soil retaining structures on reduced scale models, Proceedings of the International Conference on In-situ Soil and Rock Reinforcements, Paris.Google Scholar
  51. Juran, I. and Beech, J. (1984), Analyse Théorique du Comportement d’un Soutenement en Sol Cloue, Proceedings of the International Conference on In-Situ Reinforcement of Soils and Rock Reinforce-ments, Paris, pp. 301-307.Google Scholar
  52. Juran, I., Shafiee, S., and Schlosser, F. (1985), Numerical study of nailed soil retaining structures, Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 4, pp. 1713-1717.Google Scholar
  53. Juran, I. and Elias, V. (1987), Soil nailed retaining structures: Analysis of case histories, ASCE Special Geotechnical Publication No. 12, pp. 232-245.Google Scholar
  54. Juran, I., Baudrand, G., Farrag, K., and Elias, V. (1988), Kinematical limit analysis approach for the design of nailed soil retaining structures, Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, Fukuoka Kyushu, Japan.Google Scholar
  55. Kerisel, J., Robert, J., Schlosser, F., Juran, I., Causse, G., and Romon, C. (1981), Experimentation d’un Mur d’Ancrages Multiples (Experiments on a multi-anchored wall), Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 2, pp. 157-161.Google Scholar
  56. Koreck, W. (1978), Small diameter bored injection piles, Ground Engineering, May.Google Scholar
  57. Kranz, E. (1953), Über die Verankerung von Spundwänden, Wilh. Ernst & Sohn, 2 Aufl., Berlin.Google Scholar
  58. Littlejohn, G. S. (1970), Soil anchors, Proceedings of the Conference on Ground Engineering, Institution of Civil Engineers, London, pp. 33–44.Google Scholar
  59. Littlejohn, G. S. and Bruce, D. A. (1975), Rock anchors state-of-the-art, Part I: Design and Part II: Construction, Ground Engineering, May.Google Scholar
  60. Louis, C. (1981), Nouvelle methode de soutennement des sols en deblais, Revue Travaux No. 533.Google Scholar
  61. Louis, C. (1986), Theory and practice in soil nailing temporary or permanent works, ASCE Annual Conference, Boston.Google Scholar
  62. L.C.P.C.-S.E.T.R.A. (1985), Regies de justification des fondations sur pieux.Google Scholar
  63. Mastrantuono, C. and Tomiolo, A. (1977), First application of a totally protected anchorage, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Specialty Session, Tokyo, pp. 107–112.Google Scholar
  64. McKittrick, D. P. (1979), Reinforced earth: Application of theory and research practice, Ground Engineering, 12, No. 1, pp. 19–31.Google Scholar
  65. Meyerhof, G. G. (1953), The bearing capacity of foundations under eccentric and inclined loads, Proceedings of the 3d International Conference on Soil Mechanics and Foundation Engineering, Zurich, 1, p. 440.Google Scholar
  66. Meyerhof, G. G. (1963), Some recent research on the bearing capacity of foundations, Canadian Geotechnical Journal, 1, pp. 16–26.CrossRefGoogle Scholar
  67. Middleton, H. (1961), Raising the Argal dam, The Consulting Engineer, II.Google Scholar
  68. Mitchell, J. K. et al. (1987), Reinforcement of earth slopes and embankments, National Cooperative Highway Research Program Report No. 290, Transportation Research Board, June.Google Scholar
  69. Morris, S. S. (1956), Steenbras dam strengthened by post tensioning cables, Civil Engineering, 2.Google Scholar
  70. Murayama, S. and Shibata, T. (1958), On the Rheological Characteristics of Clays, Part I, Bulletin No. 26, Disaster Prevention Research Institute, Kyoto, Japan.Google Scholar
  71. Ostermayer, M. (1974), Construction, carrying behavior and creep characteristics of ground anchors, Conference on Diagram Walls and Anchorages, Institute of Civil Engineers, London.Google Scholar
  72. Ostermayer, M. and Sheele, F. (1977), Research on ground anchors in non-cohesive soils, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo.Google Scholar
  73. Peck, R. B. (1958), A study of the comparative behavior of friction piles, Highway Research Board Special Report No. 36, p. 72.Google Scholar
  74. Pfister, P., Evers, G., Guilland, M., and Davidson, R. (1982), Permanent Ground Anchors: Soletanche Design Criteria, Federal Highway Administration Report No. FHWA-RD-81-150.Google Scholar
  75. PTI (1980), Post-Tensioning Institute, Recommendations for Prestressed Rock and Soil Anchors, PTI, 301 W. Osborne, Suite 3500, Phoenix, Ariz., 85013, p. 57.Google Scholar
  76. Plumelle, C. (1986), Full scale experimental nailed-soil retaining structures, Revue Française de Geotechnique, No. 40, pp. 45-50.Google Scholar
  77. Plumelle, C. (1987), Experimentation en vraie grandeur d’une paroi clouée, Revue Française de Geotechnique, No. 40, pp. 45-50.Google Scholar
  78. Plumelle, C. and Gasnier, R. (1984), Etude Experimentale en Vraie Grandeur de Tirants d’Ancrage (Full scale tests on ground anchors), Proceedings of the International Symposium on In-Situ Reinforcement in Soils and Rocks, Paris.Google Scholar
  79. Rabcewicz, L. V. (1964–65), The new Austrian tunnelling method, Parts I to III, Water Power, London, Dec. 1964 and Jan. 1965.Google Scholar
  80. Rabejac, S. and Toudic, P. (1974), Construction d’un mur de soutennement entre Versailles-Matelos, Revue Generale des Chemins de Fer, pp. 232-237.Google Scholar
  81. Romanoff, M. (1957), Underground corrosion, National Bureau of Standards, Circular 579, p. 227.Google Scholar
  82. Schlosser, F. (1983), Analogies et differences dans le comportement et le calcul des ouvrages de soutennement en Terre Armee et par clouge du sol, Annais de l’Institut Technique du Batiment et des Travaux Publics, No. 418.Google Scholar
  83. Schlosser, F. and Elias, V. (1978), Friction in reinforced earth, Symposium on Earth Reinforcement, ASCE Annual Convention, Pittsburgh.Google Scholar
  84. Schlosser, F. and Segrestin, P. (1979), Dimensionnement des Ouvrages en Terre Armee par la Methode de l’Equilibre Local, International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, Paris.Google Scholar
  85. Shafiee, S. (1986), Simulation Numérique de Comportement des Sols Cloues; Interaction Sol-Renforcement et Comportement de L’ouvrage, Ph.D. Dissertation, ENPC, Paris.Google Scholar
  86. Shen, C. K., Herrmann, L. R., Romstand, K. M., Bang, S., Kim, Y. S., and Denatale, J. S. (1981a), In-situ Earth Reinforcement Lateral Support System, Report No. 81-03, Department of Civil Engineering, University of California, Davis.Google Scholar
  87. Shen, C. K., Bang, S., Romstad, J. M., Kulchin, L., and Denatale, J. S. (1981b), Field measurements of an earth support system, Journal of the Geotechnical Engineering Division, ASCE, 107, No. GT-12.Google Scholar
  88. Shen, C. K., Bang, S., and Hermann, L. R. (1981c), Ground movement analysis of an earth support system, Journal of the Geotechnical Engineering Division, ASCE, 107, No. GT-12.Google Scholar
  89. Shields, D. R., Schnabel, Jr., H., and Weatherby, D. E. (1978), Load transfer in pressure injected anchors, Journal of the Geotechnical Engineering Division, ASCE, No. GT-9, pp. 1183-1196.Google Scholar
  90. Simpson, B., O’Riordan, N. J., and Croft, D. D. (1979), A computer model for the analysis of ground movements in London clay, Geotechnique, 29, No. 2, pp. 149–175.CrossRefGoogle Scholar
  91. Singh, A. and Mitchell, J. K. (1968), General stress-strain-time function for soils, Journal of the Soil Mechanics and Foundations Division, ASCE, 94, No. SM-1, pp. 21–46.Google Scholar
  92. Welsh, J. P. et al. (1987), Soil improvement—A ten year update, ASCE Geotechnical Special Publication No. 12.Google Scholar
  93. Stocker, M. F., Korber, G. W., Gassler, G., and Gudehus, G. (1979), Soil nailing, International Conference on Soil Reinforcement, Paris, 2, pp. 463-474.Google Scholar
  94. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, Inc., New York, N.Y.CrossRefGoogle Scholar
  95. Terzaghi, K. and Peck, R. B., (1948 & 1967), Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., New York, N.Y.Google Scholar
  96. Tomlinson, M. J. (1957), The adhesion of piles driven in clay soils, Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, 2, pp. 66-71.Google Scholar
  97. Tschebotarioff, G. P. (1951), Foundations, Retaining and Earth Structures, McGraw-Hill Book Co., Inc., New York, N.Y.Google Scholar
  98. Weatherby, D. E. (1982), Tiebacks, Federal Highway Administration, Report No. FHWA/RD-82/Q47.Google Scholar
  99. Wernick, R. (1977), Stresses and strains on the surfaces of anchors, Specialty Session No. 4, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp. 113-119.Google Scholar
  100. Winkler, E. (1867), Die Lehre von Elastizität und Festigkeit, Prague.Google Scholar
  101. Woodward, R. J., Lundren, R., and Boitono, J. D. (1961), Pile loading tests in stiff clays, Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, 2, pp. 177-184.Google Scholar
  102. Zaman, M. M., Desai, C. S., and Drumm, E. C. (1984), Interface model for dynamic soil-structure interaction, Journal of the Geotechnical Engineering Division, ASCE, 110, No. SM-9, pp. 1257–1273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ilan Juran
    • 1
  • Victor Elias
    • 2
  1. 1.Department of Civil Environmental EngineeringBrooklyn Polytechnic UniversityUSA
  2. 2.V. Elias & Associates, P.A. Consulting EngineersAustralia

Personalised recommendations