Stress-Strength Relationships in the Mandibles of Hominoids

  • B. Demes
  • H. Preuschoft
  • J. E. A. Wolff


No matter how a primate acquires its food and what sorts of things it eats, mastication is an important step in food processing. According to Crompton and Hiiemae (1969), Hiiemae (1978, this volume), Hiiemae and Kay (1973), Kay and Hiiemae (1974), Beyron (1964) and Ahlgren (1966), chewing is done in all primates (so far investigated) in largely the same fashion. In a cyclic movement, the mandible is lowered (opening stroke), adducted (closing stroke), and finally moved in the power stroke upwards and inwards with the lower teeth exerting compressive and shearing forces on the food particles pressed against the upper teeth. This is done on one side only, called the biting side.


Muscle Force Functional Morphology Torsional Moment Bite Force Joint Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, J. (1966) Mechanisms of mastication. Acta odont. scand. 24, suppl. 44: 1–10.Google Scholar
  2. Beyron, H. (1964) Occlusal relations and mastication in Australian aborigines. Acta odont. scand. 22: 597–678.CrossRefGoogle Scholar
  3. Crompton, A.W. and Hiiemae, K.M. (1969) How mammalian molar teeth work. Discover 5: 23–34.Google Scholar
  4. Gingerich, P.D. (1971) Functional significance of mandibular translation in vertebrate jaw mechanics. Postilla 152: 3–10.Google Scholar
  5. Hansmann, W. (1978) GRAFEIN. Ein Program zur dialogunterstützten Erfassung allgemeiner graphischer Informationen. IKPBericht 1/78, Bochum.Google Scholar
  6. Hiiemae, K.M. (1978) Mammalian mastication: a review of the activity of the jaw muscles and the movements they produce in chewing. In “Development, Function and Evolution of Teeth” ( P.M. Butler and K.A. Joysey, eds.), pp. 359–398. Academic Press, London.Google Scholar
  7. Hiiemae, K.M. and Kay, R.F. (1973) Evolutionary trends in the dynamics of primate mastication. In “Craniofacial Biology of Primates” (M. Zingeser, ed.), pp. 28–64. Symp. 4th Int. Cong. Primat., Karger, Basel.Google Scholar
  8. Hylander, W.L. (1979a) Mandibular function in GaZago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis of the mandible. J. Morph. 159: 253–296.CrossRefGoogle Scholar
  9. Hylander, W.L. (1979b) The functional significance of primate mandibular form. J. Morph. 160: 223–240.CrossRefGoogle Scholar
  10. Kay, R.F. and Hiiemae, K.M. (1974) Jaw movement and tooth use in recent fossil primates. Am. J. phys. Anthrop. 40: 227–256.CrossRefGoogle Scholar
  11. Kummer, B. (1959a) Bauprinzipien des Saugerskeletes. Thieme-Verlag, Stuttgart.Google Scholar
  12. Kummer, B. (1959b) Biomechanik des Säugerskelets. In “Handbuch der Zoologie (J-G. Helmcke, H.V. Lengerken and D. Starck, eds.), vol. 8, pt. 24, pp. 1–80. De Gruyter, Berlin.Google Scholar
  13. Kummer, B. (1972) Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. In “Bio-mechanics–Its Foundation and Objectives” ( Fung, Perrone and Anlicker, eds.), pp. 237–271. Prentice Hall, Englewood Cliffs, N.Y.Google Scholar
  14. Maier, W. (in press) The functional morphology of the gibbon dentition. In “The Lesser Apes: Evolutionary and Behavioural Biology” (D.J. Chivers, H. Preuschoft, N. Creel and W. Brockelman, eds.). Edinburgh University Press.Google Scholar
  15. Maier, W. and Schneck, G. (1981) Konstruktionsmorphologische Untersuchungen am Gebiss der hominoiden Primaten. Z. Morph. Anthrop. 72: 127–169.Google Scholar
  16. Pauwels, F. (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, Berlin.Google Scholar
  17. Preuschoft, H. (1969) Statische Untersuchungen am Fuss der Primaten. I: Phalangen und Metatarsalia. Z. Anat. Entw.Gesch. 129: 285–345.CrossRefGoogle Scholar
  18. Preuschoft, H. (1970) Functional anatomy of the lower extremity. In “The Chimpanzee” ( G.H. Bourne, ed.), vol. 3, pp. 221–294. Karger-Verlag, Basel, München, New York.Google Scholar
  19. Preuschoft, H. (1971a) Body posture and mode of locomotion in early Pleistocene hominids. Folia primatot. 14: 209–240.CrossRefGoogle Scholar
  20. Preuschoft, H. (1971b) Mode of locomotion in subfossil giant lemurids from Madagascar. In “Proc. 3rd int. Congr. Primat., Zürich, 1970”, vol. 1, pp. 79–90. Karger-Verlag, Basel, New York.Google Scholar
  21. Preuschoft, H. (1973a) Functional anatomy of the upper extremity. In “The Chimpanzee” ( G.H. Bourne, ed.), vol. 6, pp. 34–120. Karger-Verlag, Basel, München, New York.Google Scholar
  22. Preuschoft, H. (1973b) Body posture and locomotion in some East African miocene Dryopithecinae. In “Human Evolution” ( M.H. Day, ed.), vol. 11, pp. 13–46. Taylor and Francis, London.Google Scholar
  23. Preuschoft, H. (1979) Motor behavior and shape of the locomotor apparatus. In “Environment, Behavior and Morphology: Dynamic Interactions in Primates” ( Morbeck, Preuschoft and Gomberg, eds.), pp. 263–275. G. Fischer, New York.Google Scholar
  24. Preuschoft, H., Reif, W.E. and Müller, W.H. (1974) Funktionsanpassungen in Form und Struktur an Haifischzähnen. Z. Anat. Entw.-Gesch. 143: 315–344.CrossRefGoogle Scholar
  25. Simons, E.L. and Pilbeam, D.R. (1965) Preliminary revision of the Dryopithecinae (Pongidae, Anthropoidea). Folia primatol. 3: 81–152.CrossRefGoogle Scholar
  26. Smith, J.R. (1978) Mandibular biomechanics and temporomandibular joint function in primates. Am. J. phys. Anthrop. 49: 341–350.CrossRefGoogle Scholar
  27. Tattersall, J. (1973) Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates). Am. Mus. Nat. Hist. Anthrop. Papers 52: 1–110.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • B. Demes
    • 1
  • H. Preuschoft
    • 1
  • J. E. A. Wolff
    • 1
  1. 1.Funktionelle MorphologieRuhr-Universität BochumBochum 1Germany

Personalised recommendations