Chemical Synthesis of Folylpolyglutamates, their Reduction to Tetrahydro Derivatives, and their Activity with Yeast C1-THF Synthase

  • Jesse C. Rabinowitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)


Pteroyldi- through -pentaglutamic acids were synthesized through the use of the carbodiimide method, rather than the anhydride method or solid phase synthesis. The compounds were converted to the tetrahydro derivatives by enzymatic reduction. The Km values of the folate coenzymes for yeast C1-THF synthase were determined. The determination of the values for the formyltetrahydrofolate synthetase activity of the multifunctional enzyme was possible through the use of newly devised assay based on the fluoresence properties of the pteridine derivatives. The value for the tetraglutamyl coenzyme derivative was approximately 1000-fold lower than that of the monoglutamyl coenzyme, tetrahydrofolate.


Solid Phase Synthesis Synthetase Activity Glutamic Acid Residue Synthetic Organic Chemistry Trifluoroacetic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curthoys, N. P., Scott, J. M., and Rabinowitz, J. C., J. Biol. Chem., 247, 1959–1964 (1972).PubMedGoogle Scholar
  2. 2.
    Krumdieck, C. L., and Baugh, C. M., Biochemistry, 8, 1568–1572 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Meienhofer, J., Paula, M. J., Godwin, H. A., and Rosenberg, I. H., J. Org. Chem., 35, 4137–4140 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    Godwin, H. A., Rosenberg, I. H., and Ferenz, C. R., J. Biol. Chem., 247, 2266–2271 (1972).PubMedGoogle Scholar
  5. 5.
    Coward, J. K., Parameswaran, K. N., Cashmore, A. R., and Bertino, J. R., Biochemistry, 13, 3899–3903 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    Goldman, P., and Levy, C. C., Biochemical Preparations, 13, 79–82 (1971).Google Scholar
  7. 7.
    MacKenzie, R. E., and Tan, L. U. L., Methods Enzymol., 66, 609–615 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    Paukert, J. L., and Rabinowitz, J. C., Methods Enzymol., 66, 616–626 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    Ljungdahl, L. G., O’Brien, W. E., Moore, M. R., and Liu, M.-T., Methods Enzymol., 66, 599–609 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    Uyeda, K., and Rabinowitz, J. C., J. Biol. Chem., 242, 24–31 (1967).PubMedGoogle Scholar
  11. 11.
    Rabinowitz, J. C., and Pricer, W. E., Jr., J. Biol. Chem., 237, 2898–2902 (1962).PubMedGoogle Scholar
  12. 12.
    McGuire, J. J., and Rabinowitz, J. C., J. Biol. Chem., 253, 1079–1985 (1978).PubMedGoogle Scholar
  13. 13.
    Harmony, J. A. K., and Himes, R. H., Critical Reviews in Biochem., 1, 501–535 (1973).CrossRefGoogle Scholar
  14. 14.
    Rabinowitz, J. C., and Pricer, W. E., Jr., Methods Enzymol., 6, 375–379 (1963).CrossRefGoogle Scholar
  15. 15.
    MacKenzie, R. E., and Baugh, C. M., Biochim. Biophys. Acta., 611, 187–195 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    Paukert, J. L., Straus, L. D., and Rabinowitz, J. C., J. Biol. Chem., 251, 5104–5111 (1976).PubMedGoogle Scholar
  17. 17.
    Lewis, G. P., Salen, M. E., and Rowe, P. B., in: Chemistry and Biology of Pteridines (R. L. Kisliuk and G. M. Brown, eds.), pp. 441–442, Elsevier/North Holland Publishing Co., New York (1979).Google Scholar
  18. 18.
    MacKenzie, R. E., and Baugh, C. M., Biochim. Biophys. Acta, 611, 187–195 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Jesse C. Rabinowitz
    • 1
  1. 1.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations