Skip to main content

The Role of Methionine in the Intracellular Accumulation and Function of Folates

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

Abstract

It is suggested that mammalian cells have evolved to respond to methionine deficiency since in such circumstances vital methylation reactions are put at risk, due to decreased levels of S-adenosyl-methionine. Enzymatic changes occurring as a result of decreased methionine, S-adenosylmethionine and S-adenosylhomocysteine, optimize the remethylation of homocysteine to methionine by decreasing homocysteine catabolism and channelling cellular folates into 5-methyltetrahydropteroylglutamate (5-CH3-H4PteGlu). The latter, in addition to optimising the remethylation cycle, directs the folate cofactors away from purine and pyrimidine biosynthesis and decreases the rate of proliferation of rapidly dividing cells thus reducing competition for methionine incorporation into proteins. Decreased cellular homocysteine, as a result of decreased methionine, would also restrict cell division by decreased conversion of plasma 5-CH3-H4PteGlu into intracellular polyglutamates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herbert V and Zalusky R (1962) J. Clin. Invest. 41: 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  2. Dinn JJ, Weir DG, MeCann S, Reed B, Wilson P and Scott JM (1980) Ir. J. Med. Sci. 149:1–4.

    Article  PubMed  CAS  Google Scholar 

  3. Dinn JJ, McCann S, Wilson P, Reed B, Weir D and Scott JM (1978) Lancet ii: 1154.

    Article  Google Scholar 

  4. Chanarin I (1979) The Megaloblastic Anaemias, 2nd Ed. pp. 187–377. Blackwell, London.

    Google Scholar 

  5. Deacon R, Lumb M, Perry J, Chanarin I, Minty B, Halsey M and Nunn JF (1978) Lancet ii:1023–1024.

    Article  Google Scholar 

  6. McGing P, Reed B, Weir DG and Scott JM (1978) Biochem. Biophys. Res. Commun. 82:540–546.

    Article  PubMed  CAS  Google Scholar 

  7. Das KC and Hoffbrand AV (1970) Br. J. Haematol. 19:203–221.

    Article  PubMed  CAS  Google Scholar 

  8. McGuire J, Hsich P, Coward JK and Bertino J (1980) J. Biol. Chem. 225:5776–5778.

    Google Scholar 

  9. Moran RG (1981) This book.

    Google Scholar 

  10. Shane B and Chichowicz D (1981) This book.

    Google Scholar 

  11. Reed B and Scott JM (1980) Methods Enzymol. 66:501–507.

    Article  PubMed  CAS  Google Scholar 

  12. McKenna B, Weir DG and Scott JM (1980) Biochim. Biophys. Acta 628:314–321.

    Article  PubMed  CAS  Google Scholar 

  13. Banks RGS, Henderson RJ and Pratt JM (1967) Chem. Commun. 387–388.

    Google Scholar 

  14. Jacobson W and Gandy G (1979) SPI In: Progress in Neurological Research (Eds.) WM Behan and CF Rose pp. 211–222, Pitman, London.

    Google Scholar 

  15. Dixon M and Webb EC (1979) Enzymes 3rd Ed. pp. 762–769, Longman, London.

    Google Scholar 

  16. Ross TF, Belding H and Paegel BL (1948) Blood 3:268–90.

    Google Scholar 

  17. Finkelstein JD, Kyle WE and Harris BJ (1971) Arch. Biochem. Biophys. 146:84–92.

    Article  PubMed  CAS  Google Scholar 

  18. Finkelstein JD, Martin JJ, Kyle WE and Harris BJ (1978) Arch. Biochem. Biophys. 191:153–160.

    Article  PubMed  CAS  Google Scholar 

  19. Chanarin I (1969)SPI In: The Megaloblastic Anaemias, 1st Ed., pp. 757–760. Blackwell, London.

    Google Scholar 

  20. Pereira SM and Baker SJ (1966) Amer. J. Clin. Nutr. 18:413–420.

    PubMed  CAS  Google Scholar 

  21. Carey MC, Fennelly JJ and Fitzgerald O (1968) Amer. J. Med. 45:26–31.

    Article  PubMed  CAS  Google Scholar 

  22. Eichner ER and Hillman RS (1973) J. Clin. Invest. 52:584–590.

    Article  PubMed  CAS  Google Scholar 

  23. Beard MEJ, Hatipov CS and Hamer JW (1978) Br. Med. J. i:624–625.

    Article  Google Scholar 

  24. Tisman G and Herbert V (1973) Blood 41:465–469.

    PubMed  CAS  Google Scholar 

  25. Amess JAL, Burman JF, Rees GM, Nancekievitt DG and Mollin DR (1978) Lancet ii:339–342.

    Article  Google Scholar 

  26. Chiao F and Stokstad ELR (1977) Biochim. Biophys. Acta 497:225–233.

    Article  PubMed  CAS  Google Scholar 

  27. Waxman S, Metz J and Herbert V (1969) J. Clin. Invest. 48:284–289.

    Article  PubMed  CAS  Google Scholar 

  28. Cheng FW, Shane B and Stokstad ELR (1975) Br. J. Haematol. 31:323–336.

    Article  PubMed  CAS  Google Scholar 

  29. Beavon JRG and Blair JA (1975) Br. J. Nutr. 33:299–308.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, J.M., McKenna, B., McGing, P., Molloy, A., Dinn, J., Weir, D.G. (1983). The Role of Methionine in the Intracellular Accumulation and Function of Folates. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics