Skip to main content

Polyglutamylation as a Factor in the Trapping of 5-Methyltetrahydrofolate by Cobalamin-Deficient L1210 Cells

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

Abstract

Cobalamin-deficient L1210 mouse leukemia cells, developed by propagation in a medium from which cyanocobalamin was omitted and fetal bovine serum was replaced by bovine serum albumin, grew normally on excess folate or 5-formyltetrahydrofolate. These cells responded poorly, however, to 5-methyltetrahydrofolate unless exogenous cobalamin was added. A cobalamin dependency was also observed when low levels of folate or 5-formyltetrahydrofolate were used. With 5-methyltetrahydrofolate, optimal stimulation of growth was observed with free and transcobalamin II-bound cobalamin at 4,000 and 2 pM, respectively. Under cobalamin-replete conditions, the average cobalamin content was ca. 3,000 molecules/cell, and in the deficient state this value declined to < 10 molecules/cell. Optimal replication on 5-methyltetrahydrofolate required ca. 180 molecules/cell.

Preliminary accounts of these data were presented at the VI International Symposium on the Chemistry and Biology of Pteridines (La Jolla, California) and the Third European Symposium on Vitamin B12 and Intrinsic Factor (Zurich, Switzerland). This work was supported by Grants CA06522 and AM07097 from the National Institutes of Health, and CH-31 from the American Cancer Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herbert V, Larrabee AR and Buchanan JM (1962) J. Clin. Invest. 41: 1134–1138.

    Article  PubMed  CAS  Google Scholar 

  2. Huennekens FM, Vitols KS and Henderson GB (1978) Advan. Enzymol. 47:313–346.

    CAS  Google Scholar 

  3. Das KC and Herbert V (1976) SPI In Clinics in Hematology, Hoffbrand AV (ed) Vol. 5, No. 3, pp. 697–725, W.B. Saunders, London.

    Google Scholar 

  4. Noronha JM and Silverman M (1962) SPI In Vitamin B12 and Intrinsic Factor (Proceedings of the Second European Symposium), Heinrich HC (ed) pp. 728–736, F. Enke, Stuttgart.

    Google Scholar 

  5. Herbert V and Zalusky R (1962) J. Clin. Invest. 41:1263–1276.

    Article  PubMed  CAS  Google Scholar 

  6. Buchanan JM (1964) Medicine 43:697–709.

    Article  PubMed  CAS  Google Scholar 

  7. Fujii K (1979) SPI In Chemistry and Biology of Pteridines, Kisliuk RL and Brown GM (eds) pp. 297–302, Elsevier/North Holland, New York.

    Google Scholar 

  8. Fujii K, Nagasaki T and Huennekens FM (1979)SPI In Vitamin B12 (Proceedings of the Third European Symposium), Zagalak B and Friedrich W (eds) pp. 1127–1130, Walter de Gruyter, Berlin.

    Google Scholar 

  9. Fujii K, Nagasaki T and Huennekens FM (1981) J. Biol. Chem. 256:10329–1033.

    PubMed  CAS  Google Scholar 

  10. Dolphin D, Johnson AW and Rodrigo R (1964) J. Chem. Soc. 3186–3193.

    Google Scholar 

  11. Dolphin D (1971) Methods Enzymol. 18C:34–52.

    Article  Google Scholar 

  12. Blakley RL (1960) Nature 188:231–232.

    Article  CAS  Google Scholar 

  13. Hatefi Y, Talbert PT, Osborn MJ and Huennekens FM (1960)SPI In Biochemical Preparations, Lardy HA (ed) Vol. 7, pp. 89–92, John Wiley and Sons, New York.

    Google Scholar 

  14. Gupta VS and Huennekens FM (1967) Arch. Biochem. Biophys. 120:712–718.

    Article  CAS  Google Scholar 

  15. Moran RG, Werkheiser WC and Zakrzewski SF (1976) J. Biol. Chem. 251:3569–3575.

    PubMed  CAS  Google Scholar 

  16. Osborn MJ, Talbert PT and Huennekens FM (1960) J. Amer. Chem. Soc. 82:4921–4927.

    Article  CAS  Google Scholar 

  17. Muller O and Muller G (1962) Biochem. Z. 336:299–313.

    Google Scholar 

  18. Eigen E and Shockman GD (1963) SPI. In Analytical Microbiology, Kavanagh F (ed) pp. 449–450, Academic Press, New York.

    Google Scholar 

  19. Fujii K and Huennekens FM (1974) J. Biol. Chem. 249: 6745–6753.

    PubMed  CAS  Google Scholar 

  20. Fujii K, Galivan JH and Huennekens FM (1977) Arch. Biochem. Biophys. 178:662–670.

    Article  PubMed  CAS  Google Scholar 

  21. Ceska M and Lundkvist U (1971) Clin. Chim. Acta 32:339–354.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  23. Shin YS, Buehring KU and Stokstad ELR (1972) J. Biol. Chem. 247:7266–7269.

    PubMed  CAS  Google Scholar 

  24. May M, Bardos TJ, Barger FL, Lansford M, Ravel JM, Sutherland GL and Shive W (1951) J. Amer. Chan. Soc. 73:3067–3075.

    Article  CAS  Google Scholar 

  25. Bird OD, McGlohon VM and Vaitkus JW (1969) Can. J. Microbiol. 15:465–472.

    Article  PubMed  CAS  Google Scholar 

  26. Buehring KU, Tamura T and Stokstad ELR (1974) J. Biol. Chan. 249:1081–1089.

    CAS  Google Scholar 

  27. Das KC and Hoffbrand AV (1970) Brit. J. Haematol. 19:203–221.

    Article  CAS  Google Scholar 

  28. Tisman G and Herbert V (1973) Blood 41:465–469.

    PubMed  CAS  Google Scholar 

  29. Chanarin I, Perry J and Lamb M (1974) Lancet i:1251–1252.

    Article  Google Scholar 

  30. Deacon R, Chanarin I, Perry J and Lamb M (1980) Biochem. Biophys. Res. Commun. 93:516–520.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor RT and Hanna ML (1977) Arch. Bioehem. Biophys. 181 : 331–344.

    Article  CAS  Google Scholar 

  32. McGuire JJ, Hsieh P, Coward JK and Bertino JR (1980) J. Biol. Chan. 255:5776–5788.

    CAS  Google Scholar 

  33. Jackson RC and Harrap KR (1973) Arch. Bioehem. Biophys. 158: 827–841.

    Article  CAS  Google Scholar 

  34. McGuire JJ, personal communication.

    Google Scholar 

  35. Rode W, Scanlon KJ, Moroson BA and Bertino JR (1980) J. Biol. Chem. 255:1305–1311.

    PubMed  CAS  Google Scholar 

  36. Fujii K (1981) Fed. Proc. 40:1748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujii, K., Nagasaki, T., Vitols, K.S., Huennekens, F.M. (1983). Polyglutamylation as a Factor in the Trapping of 5-Methyltetrahydrofolate by Cobalamin-Deficient L1210 Cells. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics