Characterization of the Function of Mammalian Folylpolyglutamate Synthetase (FPGS)

  • Richard G. Moran
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)

Abstract

The function and characteristics of mouse folylpolyglutamate synthetase have been examined. Folate polyglutamates were poor substrates for the efflux mechanism for monoglutamates in L1210 mouse leukemia cells, with negligible loss of preformed folate polyglutamates to the medium over four hours. Disruption of folate metabolism with methotrexate did not augment efflux of folate polyglutamates. Folylpolyglutamate synthetase, partially purified from mouse liver, was found to accept a variety of folate derivatives as substrates, including pteroic acid and methotrexate; however, the concentration of these substrates that saturated the reaction varied considerably. The enzyme that catalyzed the addition of glutamic acid to methotrexate and to the naturally-occurring folate monoglutamates appeared to be the same.

The cytotoxicity of folylpolyglutamate synthetase inhibitors was predicted to require continued cell division since their effects would be based upon a decreased rate of synthesis of folate co-factors capable of retention by the cell membrane. Hence folylpolyglutamate synthetase inhibitors should have low toxicity to nonproliferative cell populations.

Keywords

L1210 Mouse L12l0 Cell Dialyze Serum Folate Derivative Mouse Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blakley, R. L., “The Biochemistry of Folic Acid and Related Pteridines,” American Elsevier, Inc., New York, N. Y., (1969).Google Scholar
  2. 2.
    Griffin, M. J., and Brown, G. M., J. Biol. Chem., 239, 310–316 (1964).PubMedGoogle Scholar
  3. 3.
    Taylor, R. T., and Hanna, M. L., Arch. Biochem. Biophys., 181, 331–334 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    McGuire, J. J., Hsieh, P., Coward, J. K., and Bertino, J. R., J. Biol. Chem., 225, 5776–5778 (1980).Google Scholar
  5. 5.
    Moran, R. G., and Colman, P. D., Proc. Amer. Assoc. Cancer Res., 21, 25 (1980).Google Scholar
  6. 6.
    Kisliuk, R. L., Gaumont, Y., and Baugh, C. M., J. Biol. Chem., 249, 4100–4103 (1974).PubMedGoogle Scholar
  7. 7.
    Coward, J. K., Chello, P. H., Cashmore, K. N., Parameswaran, K. N., Deangelis, L. M., and Bertino, J. R., Biochemistry, 14, 1548–1552 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Baggot, J. E., and Krumdieck, C. L., Biochemistry, 18, 1036–1041 (1979).CrossRefGoogle Scholar
  9. 9.
    Dolnick, B. J., and Cheng, Y.-C., J. Biol. Chem., 253, 3563–3567 (1978).PubMedGoogle Scholar
  10. 10.
    McBurney, M. W., and Whitmore, G. F., Cell, 2, 173–182 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    Taylor, R. L., and Hanna, M. L., Arch. Biochem. Biophys., 181, 331–344 (1979).CrossRefGoogle Scholar
  12. 12.
    McHugh, M., and Cheng, Y.-C., J. Biol. Chem., 254, 11312 (1979).PubMedGoogle Scholar
  13. 13.
    Moran, R. G., Werkheiser, W. C., and Zakrzewski, S. F., J. Biol. Chem., 251, 3569–3575 (1976).PubMedGoogle Scholar
  14. 14.
    Hilton, J. G., Cooper, B. A., and Rosenblatt, D. S., J. Biol. Chem., 254, 8393 (1979).Google Scholar
  15. 15.
    Nixon, P. F., Slutsky, G., Hahas, A., and Bertino, J. R., J. Biol. Chem., 248, 5932 (1973).PubMedGoogle Scholar
  16. 16.
    Moran, R. G., Domin, B. A., and Zakrzewski, S. F., Proc. Amer. Assoc. Cancer Res., 16, 49 (1975).Google Scholar
  17. 17.
    Blakley, R. L., Nature, 188, 231–232 (1960).CrossRefGoogle Scholar
  18. 18.
    Morati, R. G., Spears, C. P., and Heidelberger, C., Proc. Natl. Acad. Sci. USA 76, 1456–1460 (1979).CrossRefGoogle Scholar
  19. 19.
    Moore, G. E., Sandberg, A. A., and Ulrich, K., J. Natl. Cancer Inst., 36, 405–413 (1966).PubMedGoogle Scholar
  20. 20.
    Foley, G. E., Lazarus, S., Farber, S., Uzman, B. G., Boone, B. A., and McCarthy, R. E., Cancer, 18, 522–529 (1965).PubMedCrossRefGoogle Scholar
  21. 21.
    Grindey, G. B., and Moran, R. G., Cancer, Res., 35, 1702–1705 (1975).Google Scholar
  22. 22.
    Hartree, E. F., Anal. Biochem., 48, 422–427 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    Lichtenstein, N. S., Oliverio, V. T., and Goldman, I. D., Biochem. Biophys. Acta, 193, 456–462 (1969).PubMedCrossRefGoogle Scholar
  24. 24.
    Nahas, A., Nixon, P. F., and Bertino, J. R., Cancer Res., 32, 1416–1421 (1972).PubMedGoogle Scholar
  25. 25.
    Goldman, I. D., Ann. N.Y. Acad. Sci., 186, 400–422 (1971).PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson, R. C., Mol. Pharmacol., 18, 281–286 (1980).PubMedGoogle Scholar
  27. 27.
    McMartin, K. E., Viragotha, V., and Tephly, T. P., Arch. Biochem. Biophys., 208, 127–136 (1981).CrossRefGoogle Scholar
  28. 28.
    Priest, D. G., Happel, K. K., Mangum, M., Bednarek, J. M., Doig, M. T., and Baugh, C. M., Anal. Biochem., 115, 163 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Richard G. Moran
    • 1
  1. 1.Division of Hematology/OncologyChildrens Hospital of Los AngelesLos AngelesUSA

Personalised recommendations