Characteristics of the Accumulation of Methotrexate Polyglutamate Derivatives in Ehrlich Ascites Tumor Cells and Isolated Rat Hepatocytes

  • David W. Fry
  • David A. Gewirtz
  • Jack C. Yalowich
  • I. David Goldman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)

Abstract

The intracellular synthesis and retention of polygammaglutamyl derivatives of methotrexate and their interactions with H2folate reductase was evaluated in the Ehrlich ascites tumor cell and the isolated rat hepatocyte. Methotrexate polyglutamates were detected within 15 minutes in hepatocytes exposed to 1 µM methotrexate, and continued to accumulate for at least 60 minutes producing a large transmembrane gradient. These derivatives appeared to be preferentially retained within the cell even under conditions where release of intracellular methotrexate was induced by dibutyryl cyclic AMP or isobutyl methyl xanthine. Deoxycholate and bromo-sulfophthalein, compounds which inhibited methotrexate influx into hepatocytes, reduced the ratio of methotrexate polyglutamates to methotrexate, suggesting that these agents also inhibit the metabolism of methotrexate.

Keywords

Rose BENGAL Isobutyl Methyl Xanthine Ehrlich Ascites Tumor Cell Polyglutamate Derivative Glutamate Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldman ID (1974) Mol. Pharmacol. 10:257–274.PubMedGoogle Scholar
  2. 2.
    Goldman ID and Fyfe MJ (1974) Mol. Pharmacol. 10:275–282.PubMedGoogle Scholar
  3. 3.
    White JC, Loftfield S and Goldman ID (1975) Mol. Pharmacol. 11:287–297.PubMedGoogle Scholar
  4. 4.
    White JC and Goldman ID (1976) Mol. Pharmacol. 12:711–719.PubMedGoogle Scholar
  5. 5.
    Goldman ID (1977) Cancer Treat. Rep. 61:549–557.PubMedGoogle Scholar
  6. 6.
    Jackson RC and Harrap KR (1973) Arch. Biochem. Biophys. 158:827–841.PubMedCrossRefGoogle Scholar
  7. 7.
    Jackson RC, Niethammer D and Hart LI (1977) Arch. Biochem. Biophys. 182:648–656.CrossRefGoogle Scholar
  8. 8.
    White JC (1979) J. Biol. Chan. 254:10889–10895.Google Scholar
  9. 9.
    Fry DW, Yalowich JC, Hess ML and Goldman ID (1981) Fed. Proc. 40:1205.Google Scholar
  10. 10.
    Gewirtz DA, White JC, Randolph JK and Goldman ID (1979) Cancer Res. 39:2914–2918.PubMedGoogle Scholar
  11. 11.
    Poser RG, Sirotnak FM and Chello PL (1980) Biochem. Pharmacol. 29:2701–2704.PubMedCrossRefGoogle Scholar
  12. 12.
    Galivan J (1979) Cancer Res. 39:735–743.PubMedGoogle Scholar
  13. 13.
    Schilsky RL, Bailey BD and Chabner BA (1980) Proc. Natl. Acad. Sci. USA 77:2919–2922.PubMedCrossRefGoogle Scholar
  14. 14.
    Whitehead VM (1977) Cancer Res. 37:408–4l2.PubMedGoogle Scholar
  15. 15.
    Rosenblatt DS, Whitehead VM, Dupont MM, Vuchich MJ and Vera N (1978) Mol. Pharmacol. 14:210–214.PubMedGoogle Scholar
  16. 16.
    Jacobs SA, Adamson RH, Chabner BA, Derr CJ and Johns DG (1975) Biochem. Biophys. Res. Comm. 63:692–698.PubMedCrossRefGoogle Scholar
  17. 17.
    Berry MN and Friend DS (1969) J. Cell Biol. 43:506–520.PubMedCrossRefGoogle Scholar
  18. 18.
    Cashmore AR, Dreyer RN, Horvath C, Knipe JO, Coward JK and Bertino JR (1980) Meth. Enzymol. 66:459–468.PubMedCrossRefGoogle Scholar
  19. 19.
    Schacterle GR and Pollack RLA (1973) Anal. Biochem. 51:654–655.PubMedCrossRefGoogle Scholar
  20. 20.
    Fry DW, White JC and Goldman ID (1978) Anal. Biochem. 90:809–815.PubMedCrossRefGoogle Scholar
  21. 21.
    Poe M, Greenfield NJ, Hirschfield JM, Williams MN and Hoogsteen K (1972) Biochemistry 11: 1023–1030.PubMedCrossRefGoogle Scholar
  22. 22.
    McGuire J, Hsieh P, Coward JK and Bertino JR (1981) this volume.Google Scholar
  23. 23.
    Fyfe MJ and Goldman ID (1973) J. Biol. Chem. 248:5067–5073.PubMedGoogle Scholar
  24. 24.
    Chello PL, Sirotnak FM and Dorick DM (1979) Cancer Res. 31:2106–2112.Google Scholar
  25. 25.
    Sirotnak FM, Moccio DM and Young CW (1981) Cancer Res. 41:966–970.PubMedGoogle Scholar
  26. 26.
    Fyfe MJ, Loftfield S and Goldman ID (1975) J. Cell Physiol. 86:201–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldman ID, Fyfe MJ, Bowen D, Loftfield S and Shafer JA (1977) Biochim. Biophys. Acta 467:185–191.PubMedCrossRefGoogle Scholar
  28. 28.
    Zager RF, Frisby SA and Oliverio VT (1973) Cancer Res. 33:1670–1676.PubMedGoogle Scholar
  29. 29.
    Sirotnak FM, Donsbach RC, Dorick DM and Moccio DM (1976) Cancer Res. 36:4672–4678.PubMedGoogle Scholar
  30. 30.
    Sirotnak FM and Donsbach RC (1975) Cancer Res. 35:1737–1744.PubMedGoogle Scholar
  31. 31.
    Eigen E amd Shockman GD (1963) In Analytical Microbiology, Kavanaugh F (ed), Academic, New York, pp 448–450.Google Scholar
  32. 32.
    Gewirtz DA, White JC, Randolph JK and Goldman ID (1980) Cancer Res. 40:573–578.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • David W. Fry
    • 1
  • David A. Gewirtz
    • 1
  • Jack C. Yalowich
    • 1
  • I. David Goldman
    • 1
  1. 1.Departments of Medicine and PharmacologyMedical College of VirginiaRichmondUSA

Personalised recommendations