In Vitro Methotrexate Polyglutamate Synthesis by Rat Liver Folylpolyglutamate Synthetase and Inhibition by Bromosulfophthalein

  • John J. McGuire
  • Pearl Hsieh
  • James K. Coward
  • Joseph R. Bertino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)


We have investigated the properties of the rat liver folylpoly-glutamate synthetase using methotrexate (MTX; 4-NH2-10-CH3-PteGlu) as a substrate. Many characteristics of the synthetase (e.g., the apparent Km values for L-glutamate and ATP, and the optimal concentrations of KCl and 2-mercaptoethanol) are virtually identical whether MTX or tetrahydrofolate is the “folate” substrate. There are, however, several significant differences between the reactions catalyzed with these two substrates. The length of products synthesized from tetrahydrofolate are inversely related to the initial monoglutamate concentration. Low tetrahydrofolate concentrations allow synthesis of longer (n = 3) polyglutamates, up to pentaglut-amate length, while high concentrations lead to predominantly di-glutamate synthesis. However, 4-NH2-10-CH3-PteGlu2 predominates regardless of the initial MTX concentration, under otherwise identical conditions. Also, tetrahydrofolate can be readily converted to pentaglutamate lengths, the same as predominates in rat liver in vivo. In contrast, MTX forms species containing only up to a total of three glutamates, i.e., 4-NH2-10-CH3-PteGlu3. Finally, the ultimate product of synthesis from tetrahydrofolate, H4teGlu5, is a fairly good inhibitor of synthetase activity with either MTX or tetrahydrofolate as the substrate. The ultimate product of MTX synthesis, 4-NH2-10-CH3-PteGlu3, however, is a poor inhibitor of activity with either substrate.


High Pressure Liquid Chromatography Synthetase Activity Ultimate Product Column Buffer Methotrexate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGuire, J. J., and Bertino, J. R., Mol. Cellular Biochem. 38:19–48 (1981).CrossRefGoogle Scholar
  2. 2.
    Baugh, C. M., and Krumdieck, C. L., Ann. N.Y. Acad. Sci., 186, 7–28 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    McGuire, J. J., Hsieh, P., Coward, J. K., and Bertino, J. R., J. Biol. Chem., 255, 5776–5788 (1980).PubMedGoogle Scholar
  4. 4.
    Shane, B., J. Biol. Chem. , 255, 5655–5662 (1980).PubMedGoogle Scholar
  5. 5.
    Taylor, R. T., and Hanna, M. L., Arch. Biochem. Biophys., 181, 331–344 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    Baugh, C. M., Krumdieck, C. K., and Nair, M. G., Biochem. Biophys. Res. Commun., 52, 27–34 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    Whitehead, V. M., Perrault, M. M., and Stelcner, S., Cancer Res., 35, 2985–2990 (1975).PubMedGoogle Scholar
  8. 8.
    Galivan, J., Cancer Res., 39, 735–743 (1979).PubMedGoogle Scholar
  9. 9.
    Gewirtz, D. A., White, J. C, Randolph, J. K., and Goldman, I. D., Cancer Res., 39, 2914–2918 (1979).PubMedGoogle Scholar
  10. 10.
    Schilsky, R. L., Bailey, B. D., and Chabner, B. A., Proc. Natl. Acad. Sci. USA, 77, 2919–2922 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    Masurekar, M., and Brown, G. M. Biochemistry, 14, 2424–2430 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    Ritari, S. J., Sakami, W., Black, C. W., and Rzepka, J., Neuro-spora Newsletter, 20, 26–27 (1973).Google Scholar
  13. 13.
    Mbran, R. C, and Colman, P. D., Proc. Am. Assoc. Cancer Res., 21, 25 (1980).Google Scholar
  14. 14.
    Griffin, M. J., and Brown, G. M., J. Biol. Chem., 239, 310–316 (1964).PubMedGoogle Scholar
  15. 15.
    Gawthorne, J. M., and Smith, R. M., Biochem. J., 136, 295–301 (1973).PubMedGoogle Scholar
  16. 16.
    Ritari, S. J., Sakami, W., Black, C. W., and Rzepka, J., Anal. Biochem., 63, 118–129 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    Brody, T., Fed. Proc, 35, 1344 (1976).Google Scholar
  18. 18.
    Lewis, G. P., and Rowe, P. B., Anal. Biochem., 93, 91–97 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Baugh, C. M., Braverman, E. B., Nair, M. G., Home, D. W., Briggs, W. T., and Wagner, C, Anal. Biochem., 92, 366–369 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    Coward, J. K., Parameswaran, K. M., Cashmore, A. R., and Bertino, J. R., Biochemistry, 13, 3899–3903 (1974).CrossRefGoogle Scholar
  21. 21.
    Gewirtz, D. A., Randolph, J. K., and Goldman, I.D. Cancer Res., 40, 1852–1857 (1980).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • John J. McGuire
  • Pearl Hsieh
  • James K. Coward
    • 1
  • Joseph R. Bertino
    • 2
  1. 1.Department of ChemistryRensselaer Polytechnic InstituteTroyUSA
  2. 2.Departments of Pharmacology and MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations