Molecular Basis for the Interaction of Polyglutamates of Folic Acid and its Analogs with Dihydrofolate Reductase

  • Raymond L. Blakley
  • Anna Crane
  • Lennie Cocco
  • Charles M. Baugh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)


Fluorimetric titration has been used to measure the dissociation constants for the complexes of folate, pteroyltriglutamate and pteroylheptaglutamate with dihydrofolate reductase purified from Lactobacillus casei, Streptococcus faecium (isoenzyme 2) and bovine liver. Effects of pH, temperature, salt concentration and second ligands have been examined. The method is shown to be unsuitable for methotrexate complexes.

The polyglutamates do not bind more tightly than folate to the S. faecium reductase under any conditions examined, but bind somewhat more tightly than folate to the L. casei reductase at low pH (<7) and to the bovine liver enzyme at pH 7–9. Increasing concentrations of KCl decrease the binding of all three ligands to the L. casei and bovine liver enzymes. Increasing pH markedly raises the dissociation constants for all complexes of the L. casei reductase, but has only slight effects on the complexes of the S. faecium reductase. Complexes of the bovine enzyme are affected to an intermediate degree by pH, but the folate complex is affected much more than those of the polyglutamates.

Model building studies have been performed with a three-dimensional model of the complex of L. casei reductase with NADPH and methotrexate. Additional glutamyl groups were added in γ-linkage to the glutamate moiety of the complexed methotrexate. A proposed mode of binding of the pteroyl polyglutamates is discussed and sequence comparisons are used to predict residues that might be involved in polyglutamate binding by reductase from other sources.


Dissociation Constant Dihydrofolate Reductase Bovine Liver Charge Interaction Glutamate Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matthews, R. G., and Baugh, C. M., Biochemistry, 19, 2040–2045 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng, F. W., Shane, B., and Stokstad, Can. J. Biochem., 53, 1020–1027 (1975).Google Scholar
  3. 3.
    Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, K. N., DeAngelis, L. M., and Bertino, J. R., Biochemistry, 14, 1548–1552 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    MacKenzie, R. E., and Baugh, C. M., Biochim. Biophys. Acta, 611, 187–195 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    Curthoys, N. P., and Rabinowitz, J. C., J. Biol. Chem., 247, 1965–1971 (1972).PubMedGoogle Scholar
  6. 6.
    Baggott, J. E., and Krumdieck, C. L., Biochemistry, 18, 1036–1041 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Coward, J. K., Parameswaran, K. N., Cashmore, A. R., and Bertino, J. R., Biochemistry, 13, 3899–3903 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    Kisliuk, R. L., Gaumont, Y., Lafer, E., Baugh, C. M., and Montgomery, J. A., Biochemistry, 20, 929–934 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    Kisliuk, R. L., Gaumont, Y., and Baugh, C. A., J. Biol. Chem., 249, 4100–4103 (1974).PubMedGoogle Scholar
  10. 10.
    Friedkin, M., Plante, L. T., Crawford, E. J., and Crumm, M., J. Biol. Chem., 250, 5614–5621 (1975).PubMedGoogle Scholar
  11. 11.
    Dolnick, B. J., and Cheng, Y.-C., J. Biol. Chem., 253 3563–3567 (1978).PubMedGoogle Scholar
  12. 12.
    Cleland, W. W., Biochim. Biophys. Acta, 67, 104–137 (1963).PubMedCrossRefGoogle Scholar
  13. 13.
    Peterson, D. L., Gleisner, J. M., and Blakley, R. L., Biochemistry, 14, 5261–5267 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    Gunderson, L. E., Dunlap, R. B., Harding, N. G. L., Freisheim, J. H., Otting, F., and Huennekens, F. M., Biochemistry, 11, 1018–1023 (1972).CrossRefGoogle Scholar
  15. 15.
    Cocco, L., Temple, C., Jr., Montgomery, J. A., London, R. E., and Blakley, R. L., Biochem. Biophys. Res. Commun., 100, 413–419 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    Nixon, P. F., and Blakley, R. L., J. Biol. Chem., 243, 4722–4731 (1968).PubMedGoogle Scholar
  17. 17.
    Blakley, R. L., Cocco, L., London, R. E., Walker, T. E., and Matwiyoff, N. A., Biochemistry, 17, 2284–2293 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    Baugh, C. M., Stevens, J. C., and Krumdieck, C. L., Biochim. Biophys. Acta, 212, 116–125 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    Cocco, L., Groff, J. P., Temple, Cr., Jr., Montgomery, J. A., London, R. E., Matwiyoff, N. A., and Blakley, R. L., Biochemistry, 20, 3972–3978 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    Biellmann, J.-F., and Jung, M. J., Eur. J. Biochem., 19, 130–134 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, R. F., Biochem. Biophys. Res. Commun., 17, 141–145 (1964).CrossRefGoogle Scholar
  22. 22.
    Matthews, D. A., Alden, R. A., Bolin, J. T., Filman, D. J., Freer, S. T., Hamlin, R., Hol, W. G. J., Kisliuk, R. L., Pastore, E. J., Plante, L. T., Xuong, N. H., and Kraut, J., J. Biol. Chem., 253, 6946–6954 (1978).PubMedGoogle Scholar
  23. 23.
    London, R. E., Groff, J. P., Cocco, L., and Blakley, R. L., Biochemistry, 21, 6169–6178 (1981).Google Scholar
  24. 24.
    Blakley, R. L., in: Molecular Actions and Targets for Cancer Chemotherapeutic Agents (A. C. Sartorelli, J. S. Lazo, and J. R. Bertino, eds.), pp. 303–332, Academic Press, New York (1981).Google Scholar
  25. 25.
    Hitchings, G. H., and Smith, S. L., Adv. Enzyme Regul., 18, 349–371 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Raymond L. Blakley
    • 1
  • Anna Crane
    • 1
  • Lennie Cocco
    • 1
  • Charles M. Baugh
    • 2
  1. 1.Department of Biochemistry College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Department of BiochemistryUniversity of South AlabamaMobileUSA

Personalised recommendations