Advertisement

Access Techniques

  • Josep Prat
  • Pere E. Balaguer
  • Joan M. Gené
  • Oscar Díaz
  • Sergi Figuerola
Chapter

Abstract

In this section we will deal with several aspects concerning the different optical access techniques. Is difficult to summarize all the matters that must appear in a study like this but we have tried to put them into a logical order. The criterion chosen has been the layer depth, from physical level to MAC level.

Keywords

Wavelength Division Multiplexating Medium Access Control Protocol Time Division Multiple Access Optical Line Terminal Access Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Agrawal 9]
    Govinf P. Agrawal, ‘Fiber-Optic Communication Systems’. John Wiley & Sons, Inc.Google Scholar
  2. [Antona 00]
    J.C. Antona et al., ‘Enhanced Phase-Shaped Binary Transmission modulation format for Dispersion-Managed WDM systems’ — ECOC ‘00.Google Scholar
  3. [Bachus 96]
    E.J. Bachus, et al., ‘Coherent optical systems implemented for business traffic routing and access: the RACE COBRA project’, Journal of Lightwave Technology, vol. 14, no. 6, pp. 1309–1319, 1996.CrossRefGoogle Scholar
  4. [Bhatt 01]
    Vipul Bhatt (Finisar), David Cunningham (Agilent); EFM Study Group Meeting, Portland, July 2001.Google Scholar
  5. Bissessur 00] H. Bissessur et al., ‘Experimental demonstration of Enhanced Phase- Shaped Binary Transmission’ — ECOC’00 Wed, 6 8.3.2.Google Scholar
  6. [Chang 98]
    C.C. Chang, H.P. Sardesai and A.M. Weiner, ‘Code-Division Multiple-Access Encoding and Decoding of Femtosecond Optical Pulses over a 2.5-km Fiber Link’, IEEE Photonics Tech. Let., Vol. 10, No. 1, pp. 171–173, 1998.CrossRefGoogle Scholar
  7. [Chung 89]
    Chung et al., ‘Optical orthogonal codes: design, analysis and applications’, IEEE Transactions on Information Theory, vol. 35, no. 3, p. 595 1989.zbMATHCrossRefGoogle Scholar
  8. [Fung 99]
    C. Fung, ‘Multiwavelength Optical Code Division Multiple Access Communications Systems’, PhD Dissertation — University of California 1999.Google Scholar
  9. [Grunnet 99]
    A. Grunnet-Jepsen, et al., ‘Demonstration of All-Fiber Sparse Lightwave CDMA Based on Temporal Phase Encoding’, IEEE Photonics Technology Letters, Vol. 11, No. 10, p. 1283, October 1999.CrossRefGoogle Scholar
  10. [Hayee 99]
    M. I. Hayee, et al., ‘NRZ Versus RZ in 10–40-Gb/s Dispersion-Managed WDM Transmission Systems’, IEEE Photonics Technology Letters, vol. 11, no. 8, p. 991, 1999.zbMATHCrossRefGoogle Scholar
  11. [Hinkov 95]
    I. Hinkov, V. Hinkov, K. Iversen and O. Ziemann, ‘Feasibility of Optical CDMA Using Spectral Encoding by Acoustically Tunable Optical Filters’, Electronics Letters, Vol. 31, No. 5, pp. 384–386, 1995.CrossRefGoogle Scholar
  12. [Iversen 95]
    K. Iversen and O Ziemann, ‘An All-Optical CDMA Communication Network By Spectral Encoding of LED Using Acoustically Tunable Optical Filters’, Proc. 1995 hit. Symposium on Signals, Systems and Electronics (ISSSE ‘85), San Francisco, pp. 529–532, 1995.Google Scholar
  13. [Kaiser 00]
    G. Kaiser et al., ‘SPM Limit of Duobinary Transmission’, ECOC ‘00 Wed, 6 7–2–2.Google Scholar
  14. [Kani 01]
    Jun-ichi Kani et al., ‘A Simple Broad-Band Coherence Multiplexed Optical Access Network and Its Scalability’, Journal Of Lightwave Technology, Vol. 19, No. 4, p. 456, 2001.CrossRefGoogle Scholar
  15. [Kavehad 95]
    M. Kavehrad and D. Zaccarin, ‘Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources’, Journal of Lightwave Technology, Vol. 13, No. 3, pp. 534–545, 1995.CrossRefGoogle Scholar
  16. [Kim 00]
    Sangin Kim et al., ‘A New Family of Space/Wavelength/Time Spread Three-Dimensional Optical Code for OCDMA Networks’, Journal Of Lightwave Technology, Vol. 18, No. 4, p. 504, 2000.Google Scholar
  17. [Kramer 01]
    G. Kramer, ‘Multiple Access Techniques for ePON’, Alloptic IEEE EFM March 2001.Google Scholar
  18. [Kuznetsov00]
    Mark Kuznetsov, Nan M. Froberg, Scott R. Henion and Hemonth G. Rao (MIT Lincoln Laboratory); Jeff Korn (Axsun Technologies); Kristin A. Rauschenbach (Photonex Corp.); Eytan H. Modiano and Vincent W. S. Chan (Massachussetts Institute of Technology; ‘A Next-Generation Optical Regional Access Network’; IEEE Communications Magazine, January 2000.Google Scholar
  19. [Kwong 91]
    W.C. Kwong et al., ‘Performance comparison of asynchronous and synchronous Code Division Multiple Access Techniques for fiber optic local area networks’, IEEE Transactions on Communications, vol. 39, no. 11, p. 1625 — November 1991.Google Scholar
  20. [LaHa 01]
    Michael LaHa, ‘Coarse WDM opens the road beyond very-short-reach markets’, WDM Solutions October, 2001.Google Scholar
  21. [Lin 01]
    Wen-Piao Lin et al., ‘The Modified Star-Ring Architecture for High-Capacity Subcarrier Multiplexed Passive Optical Networks“ Journal Of Lightwave Technology, Vol. 19, No. 1, January 2001Google Scholar
  22. [Lumetta 01]
    Steven Lumetta, University of Illinois Urbana-Champaign; ‘Architectural issues for robust optical access’; Muriel MÈdard (Massachusetts Institute of Technology), IEEE Communications Magazine, July 2001.Google Scholar
  23. [Mochida94]
    Yukoa Mochida, ‘Technologies for Local-Access Fibering’; IEEE Communications Magazine; February 1994.Google Scholar
  24. [Nguyen 95]
    L. Nguyen, B. Aazhang and J.F. Young, ‘All-Optical CDMA with Bipolar Codes’, Electronics Letters, Vol$131, No. 6, pp. 469–470, 16 1995.Google Scholar
  25. [Nguyen 97]
    L. Nguyen, T. Dennis, B. Aazhang and J.F. Young, ‘Experimental Demonstration of Bipolar Codes for Optical Spectral Amplitude CDMA Communication’, Journal of Lighwave Tech., Vol. 15, No. 9, 1997, pp. 1647–1653.CrossRefGoogle Scholar
  26. [Ono 98]
    T. Ono, ‘Characteristics of Optical Duobinary Signals in Terabit/s Capacity, High- Spectral Efficiency WDM Systems’, Journal of Lightwave Technology, vol. 16, no. 5, pp. 788–1998.Google Scholar
  27. [Pennincks97]
    D. Penninckx, ‘Enhanced-Phase-Shaped Binary Transmission’, Electronics Letters, vol. 36, no. 5, pp. 478–1997.Google Scholar
  28. [Penninckx97]
    D. Penninckx et al., ‘The Phase-Shaped Binary Transmission (PSBT): a new technique to transmit far beyond the Chromatic Dispersion limit’, IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 259–1997.Google Scholar
  29. [Penninckx98]
    D. Penninckx et al., ‘Experimental verification of the Phase-Shaped Binary Transmission (PSBT)’, IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 612–1998.Google Scholar
  30. [Penninckx98]
    D. Penninckx, ‘Effect of Electrical Filtering of Duobinary Signals on the Chromatic Dispersion Transmission Limitations’, ECOC ‘88 vol. 1, p. 537.Google Scholar
  31. [Pfeiffer 00]
    Thomas Pfeiffer et al., ‘Coarse WDM/CDM/TDM Concept for Optical Packet Transmission in Metropolitan and Access Networks Supporting 400 Channels at 2.5 Gb/s Peak Rate’, Journal Of Lightwave Technology, Vol. 18, No. 12, p. 1928, 2000.CrossRefGoogle Scholar
  32. [Prat 01]
    J. Prat et al., ‘Optical CSMA/CD Strategy for an Ethernet Access Network’, NOC Thursday Morning 9:00 Room 2, 2001.Google Scholar
  33. [Prat 95]
    J. Prat, J. Comellas, G. Junyent, ‘Experimental demonstration of an allfiber endless polarization controller based on Faraday rotation’, IEEE Photonics Technology Letters, vol. 7, no. 12, 1995.Google Scholar
  34. [Prat 98]
    J. Prat et al., ‘Minimum channel spacing in an OFDM CPFSK Optical Coherent System’, Optical and Quantum Electronics, Vol. 30 No. 3, 1998.Google Scholar
  35. Rodellar 98] D. Rodellar, ‘A comparison between single and multi-channel CSMA/CD protocols of equivalent capacity’, NOC ‘88.Google Scholar
  36. [Royset 98]
    Royset et al., ‘Symmetry requirements for 10 Gb/s Optical Duobinary Transmitters’, IEEE Photonics Technology Letters, vol. 10, no. 2, p. 273, 1998.CrossRefGoogle Scholar
  37. [Sala 01]
    D. Sala, ‘PON Functional Requirements: Services and Performance’, Broadcom IEEE EFM July 2001.Google Scholar
  38. [Salehi 89-I]
    J.A. Salehi et al., ‘Code Division Multiple Accessin optical fiber networks — Part I: Fundamental principles“, IEEE Transactions on Communications, vol. 37, no. 8, p. 824, 1989.CrossRefGoogle Scholar
  39. [Salehi 89-II]
    J.A. Salehi et al., ‘Code Division Multiple Accessin optical fiber networks — Part II: System performance analysis’, IEEE Transactions on Communications, vol. 37, no. 8, p. 834, 198. 9Google Scholar
  40. [Salehi 90]
    J.A. Salehi, A.M. Weiner and J.P. Heritage, ‘Coherent Ultrashort Light Pulse Code-Division Multiple Access Communication Systems’, J. Lightwave Tech., Vol. 8, no. 3, pp. 478–491, 1990.CrossRefGoogle Scholar
  41. [Shaar 83]
    A.A. Shaar et al. ‘Prime sequences: Quasi-Optimal sequences for OR channel Code Division Multiplexing’, Electronics Letters, vol. 19, no. 21, p. 888, 1983CrossRefGoogle Scholar
  42. [Shtaif 99]
    M. Shtaif et al., ‘The Relation Between Optical Duobinary Modulation and Spectral Efficiency in DWDM Systems’, IEEE Photonics Technology Letters, vol. 11, no. 6, p. 712, 1999.CrossRefGoogle Scholar
  43. [Sorensen 01]
    S. Soerensen et al., ‘Optical Beat Noise Suppression and Power Equalization in Subcarrier Multiple Access Passive Optical Networks by Downstream Feedback’, Journal Of Lightwave Technology, Vol. 18, No. 10, p. 1337, 2000.CrossRefGoogle Scholar
  44. [Spencer 00]
    M.J. Spencer et al., ‘WRAP: A Medium Acces Control Protocol for Wavelength-Routed Passive Optical Networks’, Journal of Lightwave Technology, vol. 18, no. 12, p. 1657, 2000.CrossRefGoogle Scholar
  45. [Tanembaum 97]
    A. S. Tanembaum ‘Computer Networks’, 3rd. Edition, Prentice Hall 1997.Google Scholar
  46. [Tomesen 94]
    M.T. Tomesen, ‘Novel heterodyne CPFSK receiver allowing dispersion equalization in a narrow IF bandwidth starting from nearly DC’, ECOC ‘84, p. 73, Florence, 1994.Google Scholar
  47. [Tomoyuki0l]
    Tomoyuki Akiyama and Osamu Wada, ‘Beat-Detect OTDM Demultiplexer’, Journal Of Lightwave Technology, Vol. 19, No. 9, p. 1326, September 2001CrossRefGoogle Scholar
  48. [Tseng 01]
    Emy Tseng, Massachusetts Institute of Technology, September 2001.Google Scholar
  49. [Ulmer 00]
    Todd G. Ulmer et al., ‘160-gb/s Optically Time-division Multiplexed Link With All-optical Demultiplexing’, Journal Of Lightwave Technology, Vol. 18, No. 12, p. 1964, 2000.CrossRefGoogle Scholar
  50. [Walker 90]
    N.G.Walker and G.R.Walker, ‘Polarization Control for Coherent Communications’, Journal of Lightwave Technology, Vol. 8, No. 3, 1990.Google Scholar
  51. [Walklin 97]
    S. Walklin et al., ‘On the Relationship Between Chromatic Dispersion and transmitter Filter Response in Duobinary Optical Communications Systems’, IEEE Photonics Technology Letters, vol. 9, no. 7, p. 1005, 1997.CrossRefGoogle Scholar
  52. [Walklin 99]
    S. Walklin et al., ‘Multilevel Signalling for Increasing the Reach of 10 Gb/s Lightwave Systems’, Journal of Lightwave Technology, vol. 17, no. 11 p. 22–35, 1999.CrossRefGoogle Scholar
  53. [Wedding 96]
    B. Wedding et al., ‘Multilevel Dispersion Suported Transmission at 20 Gb/s over 46 km Installed Single Mode Fiber’, ECOC ‘86 MoB. 4. 4.Google Scholar
  54. [Weiner 90]
    J.A. Salehi, A.M. Weiner and J.P. Heritage, ‘Coherent Ultrashort Light Pulse Code-Division Multiple Access Communication Systems’, J. Lightwave Tech., Vol. 8, no. 3, pp. 478–491, 1990.CrossRefGoogle Scholar
  55. [Weiner 98]
    C.C. Chang, H.P. Sardesai and A.M. Weiner, ‘Code-Division Multiple-Access Encoding and Decoding of Femtosecond Optical Pulses over a 2.5-km Fiber Link’, IEEE Photonics Tech. Let., Vol. 10, No. 1, pp. 171–173, Jan 1998.CrossRefGoogle Scholar
  56. [Woodward97]
    S. L. Woodward, X. Lu and A. H. Gnauck, ‘Bidirectional, SubcarrierMultiplexed Transmission Using 1.3-(m Fabry-Perot Lasers’, IEEE Photonics Technology Letters, Vol. 9, No. 10, 1997.Google Scholar
  57. [Woodward98]
    S. L. Woodward, J. W. Stayt, D. M. Romero, J. M. Freund and G. J. Przybylek, ‘A Study of Otpical Beat Interference Between Fabry-Perot Lasers’, IEEE Photonics Technology Letters, Vol. 10, No. 5, 1998.Google Scholar
  58. [Yegnan 00]
    S. Yegnanarayanan et al., ‘Fast Wavelength-Hopping Time-Spreading Encoding/Decoding for Optical CDMA’, IEEE Phototonics Technology Letters, Vol. 12, No. 5, p. 573, 2000.CrossRefGoogle Scholar
  59. [Yu 01]
    Jianjun Yu and Palle Jeppesen, ‘Simultaneous All-Optical Demultiplexing and Regeneration Based on Self-Phase and Cross-Phase Modulation in a Dispersion Shifted Fiber’, Journal of Lightwave Technology, Vol. 19, No. 7, p. 941, July 2001.CrossRefGoogle Scholar
  60. [Zaccarin 93]
    Zaccarin and M. Kavehrad, ‘An Optical CDMA System Based on Spectral Encoding of LED’, IEEE Photonics Technology Letters, Vol. 4, No. 4, pp. 479–482, 1993.CrossRefGoogle Scholar
  61. [Zaccarin 95]
    M. Kavehrad and D. Zaccarin, ‘Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources’, Journal of Lightwave Technology, Vol. 13, No. 3, pp. 534–545, 1995.CrossRefGoogle Scholar
  62. [Zheng 98]
    X. Zheng et al., ‘Receiver optimization for 40 Gb/s Optical Duobinary Signal’, IEEE Photonics Technology Letters, vol. 13, no. 7, p. 744, 2001–09–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Josep Prat
    • 1
  • Pere E. Balaguer
    • 1
  • Joan M. Gené
    • 1
  • Oscar Díaz
    • 1
  • Sergi Figuerola
    • 1
  1. 1.Universitat Politècnica de CatalunyaSpain

Personalised recommendations