Skip to main content

Abstract

In this section we will deal with several aspects concerning the different optical access techniques. Is difficult to summarize all the matters that must appear in a study like this but we have tried to put them into a logical order. The criterion chosen has been the layer depth, from physical level to MAC level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Govinf P. Agrawal, ‘Fiber-Optic Communication Systems’. John Wiley & Sons, Inc.

    Google Scholar 

  2. J.C. Antona et al., ‘Enhanced Phase-Shaped Binary Transmission modulation format for Dispersion-Managed WDM systems’ — ECOC ‘00.

    Google Scholar 

  3. E.J. Bachus, et al., ‘Coherent optical systems implemented for business traffic routing and access: the RACE COBRA project’, Journal of Lightwave Technology, vol. 14, no. 6, pp. 1309–1319, 1996.

    Article  Google Scholar 

  4. Vipul Bhatt (Finisar), David Cunningham (Agilent); EFM Study Group Meeting, Portland, July 2001.

    Google Scholar 

  5. Bissessur 00] H. Bissessur et al., ‘Experimental demonstration of Enhanced Phase- Shaped Binary Transmission’ — ECOC’00 Wed, 6 8.3.2.

    Google Scholar 

  6. C.C. Chang, H.P. Sardesai and A.M. Weiner, ‘Code-Division Multiple-Access Encoding and Decoding of Femtosecond Optical Pulses over a 2.5-km Fiber Link’, IEEE Photonics Tech. Let., Vol. 10, No. 1, pp. 171–173, 1998.

    Article  Google Scholar 

  7. Chung et al., ‘Optical orthogonal codes: design, analysis and applications’, IEEE Transactions on Information Theory, vol. 35, no. 3, p. 595 1989.

    Article  MATH  Google Scholar 

  8. C. Fung, ‘Multiwavelength Optical Code Division Multiple Access Communications Systems’, PhD Dissertation — University of California 1999.

    Google Scholar 

  9. A. Grunnet-Jepsen, et al., ‘Demonstration of All-Fiber Sparse Lightwave CDMA Based on Temporal Phase Encoding’, IEEE Photonics Technology Letters, Vol. 11, No. 10, p. 1283, October 1999.

    Article  Google Scholar 

  10. M. I. Hayee, et al., ‘NRZ Versus RZ in 10–40-Gb/s Dispersion-Managed WDM Transmission Systems’, IEEE Photonics Technology Letters, vol. 11, no. 8, p. 991, 1999.

    Article  MATH  Google Scholar 

  11. I. Hinkov, V. Hinkov, K. Iversen and O. Ziemann, ‘Feasibility of Optical CDMA Using Spectral Encoding by Acoustically Tunable Optical Filters’, Electronics Letters, Vol. 31, No. 5, pp. 384–386, 1995.

    Article  Google Scholar 

  12. K. Iversen and O Ziemann, ‘An All-Optical CDMA Communication Network By Spectral Encoding of LED Using Acoustically Tunable Optical Filters’, Proc. 1995 hit. Symposium on Signals, Systems and Electronics (ISSSE ‘85), San Francisco, pp. 529–532, 1995.

    Google Scholar 

  13. G. Kaiser et al., ‘SPM Limit of Duobinary Transmission’, ECOC ‘00 Wed, 6 7–2–2.

    Google Scholar 

  14. Jun-ichi Kani et al., ‘A Simple Broad-Band Coherence Multiplexed Optical Access Network and Its Scalability’, Journal Of Lightwave Technology, Vol. 19, No. 4, p. 456, 2001.

    Article  Google Scholar 

  15. M. Kavehrad and D. Zaccarin, ‘Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources’, Journal of Lightwave Technology, Vol. 13, No. 3, pp. 534–545, 1995.

    Article  Google Scholar 

  16. Sangin Kim et al., ‘A New Family of Space/Wavelength/Time Spread Three-Dimensional Optical Code for OCDMA Networks’, Journal Of Lightwave Technology, Vol. 18, No. 4, p. 504, 2000.

    Google Scholar 

  17. G. Kramer, ‘Multiple Access Techniques for ePON’, Alloptic IEEE EFM March 2001.

    Google Scholar 

  18. Mark Kuznetsov, Nan M. Froberg, Scott R. Henion and Hemonth G. Rao (MIT Lincoln Laboratory); Jeff Korn (Axsun Technologies); Kristin A. Rauschenbach (Photonex Corp.); Eytan H. Modiano and Vincent W. S. Chan (Massachussetts Institute of Technology; ‘A Next-Generation Optical Regional Access Network’; IEEE Communications Magazine, January 2000.

    Google Scholar 

  19. W.C. Kwong et al., ‘Performance comparison of asynchronous and synchronous Code Division Multiple Access Techniques for fiber optic local area networks’, IEEE Transactions on Communications, vol. 39, no. 11, p. 1625 — November 1991.

    Google Scholar 

  20. Michael LaHa, ‘Coarse WDM opens the road beyond very-short-reach markets’, WDM Solutions October, 2001.

    Google Scholar 

  21. Wen-Piao Lin et al., ‘The Modified Star-Ring Architecture for High-Capacity Subcarrier Multiplexed Passive Optical Networks“ Journal Of Lightwave Technology, Vol. 19, No. 1, January 2001

    Google Scholar 

  22. Steven Lumetta, University of Illinois Urbana-Champaign; ‘Architectural issues for robust optical access’; Muriel MÈdard (Massachusetts Institute of Technology), IEEE Communications Magazine, July 2001.

    Google Scholar 

  23. Yukoa Mochida, ‘Technologies for Local-Access Fibering’; IEEE Communications Magazine; February 1994.

    Google Scholar 

  24. L. Nguyen, B. Aazhang and J.F. Young, ‘All-Optical CDMA with Bipolar Codes’, Electronics Letters, Vol$131, No. 6, pp. 469–470, 16 1995.

    Google Scholar 

  25. L. Nguyen, T. Dennis, B. Aazhang and J.F. Young, ‘Experimental Demonstration of Bipolar Codes for Optical Spectral Amplitude CDMA Communication’, Journal of Lighwave Tech., Vol. 15, No. 9, 1997, pp. 1647–1653.

    Article  Google Scholar 

  26. T. Ono, ‘Characteristics of Optical Duobinary Signals in Terabit/s Capacity, High- Spectral Efficiency WDM Systems’, Journal of Lightwave Technology, vol. 16, no. 5, pp. 788–1998.

    Google Scholar 

  27. D. Penninckx, ‘Enhanced-Phase-Shaped Binary Transmission’, Electronics Letters, vol. 36, no. 5, pp. 478–1997.

    Google Scholar 

  28. D. Penninckx et al., ‘The Phase-Shaped Binary Transmission (PSBT): a new technique to transmit far beyond the Chromatic Dispersion limit’, IEEE Photonics Technology Letters, vol. 9, no. 2, pp. 259–1997.

    Google Scholar 

  29. D. Penninckx et al., ‘Experimental verification of the Phase-Shaped Binary Transmission (PSBT)’, IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 612–1998.

    Google Scholar 

  30. D. Penninckx, ‘Effect of Electrical Filtering of Duobinary Signals on the Chromatic Dispersion Transmission Limitations’, ECOC ‘88 vol. 1, p. 537.

    Google Scholar 

  31. Thomas Pfeiffer et al., ‘Coarse WDM/CDM/TDM Concept for Optical Packet Transmission in Metropolitan and Access Networks Supporting 400 Channels at 2.5 Gb/s Peak Rate’, Journal Of Lightwave Technology, Vol. 18, No. 12, p. 1928, 2000.

    Article  Google Scholar 

  32. J. Prat et al., ‘Optical CSMA/CD Strategy for an Ethernet Access Network’, NOC Thursday Morning 9:00 Room 2, 2001.

    Google Scholar 

  33. J. Prat, J. Comellas, G. Junyent, ‘Experimental demonstration of an allfiber endless polarization controller based on Faraday rotation’, IEEE Photonics Technology Letters, vol. 7, no. 12, 1995.

    Google Scholar 

  34. J. Prat et al., ‘Minimum channel spacing in an OFDM CPFSK Optical Coherent System’, Optical and Quantum Electronics, Vol. 30 No. 3, 1998.

    Google Scholar 

  35. Rodellar 98] D. Rodellar, ‘A comparison between single and multi-channel CSMA/CD protocols of equivalent capacity’, NOC ‘88.

    Google Scholar 

  36. Royset et al., ‘Symmetry requirements for 10 Gb/s Optical Duobinary Transmitters’, IEEE Photonics Technology Letters, vol. 10, no. 2, p. 273, 1998.

    Article  Google Scholar 

  37. D. Sala, ‘PON Functional Requirements: Services and Performance’, Broadcom IEEE EFM July 2001.

    Google Scholar 

  38. J.A. Salehi et al., ‘Code Division Multiple Accessin optical fiber networks — Part I: Fundamental principles“, IEEE Transactions on Communications, vol. 37, no. 8, p. 824, 1989.

    Article  Google Scholar 

  39. J.A. Salehi et al., ‘Code Division Multiple Accessin optical fiber networks — Part II: System performance analysis’, IEEE Transactions on Communications, vol. 37, no. 8, p. 834, 198. 9

    Google Scholar 

  40. J.A. Salehi, A.M. Weiner and J.P. Heritage, ‘Coherent Ultrashort Light Pulse Code-Division Multiple Access Communication Systems’, J. Lightwave Tech., Vol. 8, no. 3, pp. 478–491, 1990.

    Article  Google Scholar 

  41. A.A. Shaar et al. ‘Prime sequences: Quasi-Optimal sequences for OR channel Code Division Multiplexing’, Electronics Letters, vol. 19, no. 21, p. 888, 1983

    Article  Google Scholar 

  42. M. Shtaif et al., ‘The Relation Between Optical Duobinary Modulation and Spectral Efficiency in DWDM Systems’, IEEE Photonics Technology Letters, vol. 11, no. 6, p. 712, 1999.

    Article  Google Scholar 

  43. S. Soerensen et al., ‘Optical Beat Noise Suppression and Power Equalization in Subcarrier Multiple Access Passive Optical Networks by Downstream Feedback’, Journal Of Lightwave Technology, Vol. 18, No. 10, p. 1337, 2000.

    Article  Google Scholar 

  44. M.J. Spencer et al., ‘WRAP: A Medium Acces Control Protocol for Wavelength-Routed Passive Optical Networks’, Journal of Lightwave Technology, vol. 18, no. 12, p. 1657, 2000.

    Article  Google Scholar 

  45. A. S. Tanembaum ‘Computer Networks’, 3rd. Edition, Prentice Hall 1997.

    Google Scholar 

  46. M.T. Tomesen, ‘Novel heterodyne CPFSK receiver allowing dispersion equalization in a narrow IF bandwidth starting from nearly DC’, ECOC ‘84, p. 73, Florence, 1994.

    Google Scholar 

  47. Tomoyuki Akiyama and Osamu Wada, ‘Beat-Detect OTDM Demultiplexer’, Journal Of Lightwave Technology, Vol. 19, No. 9, p. 1326, September 2001

    Article  Google Scholar 

  48. Emy Tseng, Massachusetts Institute of Technology, September 2001.

    Google Scholar 

  49. Todd G. Ulmer et al., ‘160-gb/s Optically Time-division Multiplexed Link With All-optical Demultiplexing’, Journal Of Lightwave Technology, Vol. 18, No. 12, p. 1964, 2000.

    Article  Google Scholar 

  50. N.G.Walker and G.R.Walker, ‘Polarization Control for Coherent Communications’, Journal of Lightwave Technology, Vol. 8, No. 3, 1990.

    Google Scholar 

  51. S. Walklin et al., ‘On the Relationship Between Chromatic Dispersion and transmitter Filter Response in Duobinary Optical Communications Systems’, IEEE Photonics Technology Letters, vol. 9, no. 7, p. 1005, 1997.

    Article  Google Scholar 

  52. S. Walklin et al., ‘Multilevel Signalling for Increasing the Reach of 10 Gb/s Lightwave Systems’, Journal of Lightwave Technology, vol. 17, no. 11 p. 22–35, 1999.

    Article  Google Scholar 

  53. B. Wedding et al., ‘Multilevel Dispersion Suported Transmission at 20 Gb/s over 46 km Installed Single Mode Fiber’, ECOC ‘86 MoB. 4. 4.

    Google Scholar 

  54. J.A. Salehi, A.M. Weiner and J.P. Heritage, ‘Coherent Ultrashort Light Pulse Code-Division Multiple Access Communication Systems’, J. Lightwave Tech., Vol. 8, no. 3, pp. 478–491, 1990.

    Article  Google Scholar 

  55. C.C. Chang, H.P. Sardesai and A.M. Weiner, ‘Code-Division Multiple-Access Encoding and Decoding of Femtosecond Optical Pulses over a 2.5-km Fiber Link’, IEEE Photonics Tech. Let., Vol. 10, No. 1, pp. 171–173, Jan 1998.

    Article  Google Scholar 

  56. S. L. Woodward, X. Lu and A. H. Gnauck, ‘Bidirectional, SubcarrierMultiplexed Transmission Using 1.3-(m Fabry-Perot Lasers’, IEEE Photonics Technology Letters, Vol. 9, No. 10, 1997.

    Google Scholar 

  57. S. L. Woodward, J. W. Stayt, D. M. Romero, J. M. Freund and G. J. Przybylek, ‘A Study of Otpical Beat Interference Between Fabry-Perot Lasers’, IEEE Photonics Technology Letters, Vol. 10, No. 5, 1998.

    Google Scholar 

  58. S. Yegnanarayanan et al., ‘Fast Wavelength-Hopping Time-Spreading Encoding/Decoding for Optical CDMA’, IEEE Phototonics Technology Letters, Vol. 12, No. 5, p. 573, 2000.

    Article  Google Scholar 

  59. Jianjun Yu and Palle Jeppesen, ‘Simultaneous All-Optical Demultiplexing and Regeneration Based on Self-Phase and Cross-Phase Modulation in a Dispersion Shifted Fiber’, Journal of Lightwave Technology, Vol. 19, No. 7, p. 941, July 2001.

    Article  Google Scholar 

  60. Zaccarin and M. Kavehrad, ‘An Optical CDMA System Based on Spectral Encoding of LED’, IEEE Photonics Technology Letters, Vol. 4, No. 4, pp. 479–482, 1993.

    Article  Google Scholar 

  61. M. Kavehrad and D. Zaccarin, ‘Optical Code-Division-Multiplexed Systems Based on Spectral Encoding of Noncoherent Sources’, Journal of Lightwave Technology, Vol. 13, No. 3, pp. 534–545, 1995.

    Article  Google Scholar 

  62. X. Zheng et al., ‘Receiver optimization for 40 Gb/s Optical Duobinary Signal’, IEEE Photonics Technology Letters, vol. 13, no. 7, p. 744, 2001–09–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prat, J., Balaguer, P.E., Gené, J.M., Díaz, O., Figuerola, S. (2002). Access Techniques. In: Fiber-to-the-Home Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5219-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5219-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5297-4

  • Online ISBN: 978-1-4757-5219-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics