The composition of a wine is predetermined by the initial composition of the grapes and subsequently determined by the particular treatments that it undergoes during the winemaking sequence. The combination of the effects of grape cultivar and maturity, must handling, fermentation conditions, microbial control, aging and other treatments constitute the’ style’ in which the wine is made. Red wine styles can range from very methodical, empirical, traditional ones to predefined, adaptive and quantitative ones, with yet others being some combination of the two. In some wine styles, the effects of one or more of the aspects of the style (such as tannin extraction during fermentation or oak component extraction from the barrel) dominate the flavour, colour or aging potential of the wine. In other wine styles, more subtle contributions of several aspects are sought (by deliberately controlling the extraction conditions) and in some instances deliberately minimized (such as the aroma contributions of wild yeast during fermentation or during aging).


Hydrogen Sulphide Wine Fermentation Malolactic Fermentation Tannin Extraction Beverage Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acree, T.E., Sonoff, E.P. and Splitstoesser, D.F. (1972) Effect of yeast strain and type of sulfur compound on hydrogen sulfide production. Am. J. Enol. Vitic, 23, 6–9.Google Scholar
  2. Bakker, J. and Timberlake, C.F. (1985) The distribution and content of anthocyanins in young port wines as determined by high performance liquid chromatography. J. Sci. Food Agric, 36, 1325–1333.CrossRefGoogle Scholar
  3. Bakker, J., Picinelli, A. and Bridle, P. (1993) Model wine solutions: colour and composition changes during ageing. Vitis, 32, 111–118.Google Scholar
  4. Balakian, S. and Berg, H.W. (1968) The role of polyphenols in the behavior of potassium bitartrate in red wines. Am. J. Enol. Vitic, 19, 91–100.Google Scholar
  5. Bayonove, C., Cordonnier, R.A. and Dubois, P. (1975) Etude d’une fraction caracteristique de l’aroma du raisin de la variete Cabernet Sauvignon; mise en evidence de la 2-methoxy-3-isobutylpyrazine. C. R. Acad. Sci. Paris Ser. D, 281, 75–78.Google Scholar
  6. Beech, F.W., Burroughs, L.F., Timberlake, C.F. and Whiting, G.C. (1979) Progres recent sur l’aspect chimique et l’action antimicrobienne de l’anhydride sulfureux (SO2). Bull. O.I.V., 52, 1001–1022.Google Scholar
  7. Belleville. M.-P., Brillouet, J.-M., Tarodo de la Fuente, B., Saulnier, L. and Moutounet, M. (1991) Differential roles of red wine colloids in the fouling of a cross-flow microfiltration alumina membrane. Vitic. Enol. Sci., 46, 100–107.Google Scholar
  8. Blazer. R.M. (1991) Influence of environment, wine evaporation from barrels. Practical Winery and Vineyard, 12(1), 20–22 and 12(2), 18.Google Scholar
  9. Boulton, R. (1979) The heat transfer characteristics of wine fermentors. Am. J. Enol. Vitic, 30, 152–156.Google Scholar
  10. Boulton, R. (1980) The prediction of fermentation behavior by a kinetic model. Am. J. Enol. Vitic., 31, 40–45.Google Scholar
  11. Boulton, R. (1983) The conductivity method for evaluating the potassium bitartrate stability of wines. Parts 1,2. Enology Briefs 2,3. Coop. Extn Univ. Calif. Davis, USA.Google Scholar
  12. Brillouet, J.M., Bosso, C. and Moutounet, M. (1990) Isolation, purification and characterization of an arabinogalactan from a red wine. Am. J. Enol. Vitic, 41, 29–36.Google Scholar
  13. Crowell, E.A. and Guymon, J.F. (1975) Wine constituents arising from sorbic acid addition and identification of 2-ethoxy hexa-3,5 diene as a source of geranium-like odor. Am. J. Enol. Vitic, 26, 97–102.Google Scholar
  14. Dick, K.J. Molan, P.C. and Eschenbruch, R.E. (1992) The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vit is, 31, 105–116.Google Scholar
  15. Dubernet, M., Ribéreau-Gayon, P., Lerner, H.R., Harel, E. and Mayer, A.M. (1977) Purification and properties of laccase from Botrytis cinerea. Phytochemistry, 16, 191–193.CrossRefGoogle Scholar
  16. Dubourdieu, D., Grassin, C, Deruche, C. and Ribereau-Gayon, P. (1984) Mise au point d’une mesure rapide de l’activite laccase dans les mouts et dans les vins par la methode a la syringaldazine. Application a l’appreciation de l’etat sanitaire des vendages. Conn. Vigne Vin, 18, 237–252.Google Scholar
  17. Ducruet, V. (1984) Comparison of the headspace volatiles of carbonic maceration and traditional wine. Lebensm. Wiss. Technol, 17, 217–221.Google Scholar
  18. Du Plessis, L. de (1963) Microbiology of South African winemaking. Part V. Vitamin and amino acid requirements of lactic acid bacteria from dry wines. S. Afr. J. Agric. Sci., 6, 485–494.Google Scholar
  19. Etievant, P., Schlich, P., Bertrand, A., Symonds, P. and Bouvier, J.-C. (1988) Varietal and geographic classification of French wines in terms of pigments and flavonoid compounds. J. Sci. Food Agric, 42, 39–54.CrossRefGoogle Scholar
  20. Flanzy, C, Flanzy, M. and Benard, P. (1987) La Vinification Par Maceration Carbonique. INRA, Paris, France.Google Scholar
  21. Fornachon, J.C.M. (1968) Influence of different yeasts on the growth of lactic acid bacteria In wine. J. Sci. Food Agric, 19, 374–378.CrossRefGoogle Scholar
  22. Fregoni, M., Perino, A. and Vercesi, A. (1993) Valutazione dell’infezione botritica su uve e su mosti mediante il test immunologico ELIS A. Vignevini, 20 (7–8), 67–74.Google Scholar
  23. Hebrero, E., Santos-Buegla, C. and Rivas-Gonzalo, J.C. (1988) HPLC — diode array spectroscopy identification of anthocyanins of Vitis vinifera variety Tempranillo. Am. J. Enol. Vitic, 39, 227–233.Google Scholar
  24. Kantz, K. and Singleton, V.L. (1990) Isolation and determination of polymeric polyphenols using Sephadex LH-20 and analysis of grape tissue extracts. Am. J. Enol. Vitic, 41, 223–228.Google Scholar
  25. King, S.W. (1986) Recent developments of industrial malolactic starter cultures for the wine industry. Devel. Environ. Microbiol., 26, 311–321.Google Scholar
  26. King, S.W. and Beelman, R.B. (1986) Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model grape juice/wine system. Am. J. Enol. Vitic, 37, 53–60.Google Scholar
  27. Krieger, S.A., Hammes, W.P. and Henick-Kling, T. (1993) How to use malolactic starter cultures in the winery. Aust. N.Z. Wine Ind. J., 8, 154–160.Google Scholar
  28. Lay, H. and Draeger, U. (1991) Profiles of pigments from different red wines. Vitic. Enol. Sci., 46, 48–57.Google Scholar
  29. Llauberes, R.M. (1990) Structure of an extracellular β D-glucan from Pediococcus sp., a wine lactic bacteria. Carbohydr. Res., 203, 103–107.CrossRefGoogle Scholar
  30. Llauberes, R.-M., Dubourdieu, D. and Villettaz, J.-C. (1987) Exocellullar polysaccharides from Saccharomyces in wine. J. Sci. Food Agric., 41, 277–286.CrossRefGoogle Scholar
  31. McCord, J.D. and Ryu, D.D.Y. (1985) Development of malolactic fermentation process using immobilized whole cells and enzymes. Am. J. Enol. Vitic., 36, 214–218.Google Scholar
  32. Nagel, C.W. and Wulf, L.W. (1979) Changes in the anthocyanins, flavonoids and hydroxycinnamate acid esters during the fermentation and aging of Merlot and Cabernet Sauvignon. Am. J. Enol. Vitic, 30, 111–116.Google Scholar
  33. Oszmianski, J. and Sapis, J.C. (1989) Fractionation and identification of some low molecular weight grape seed phenolics. J. Agric. Food Chem., 37, 1293–1297.CrossRefGoogle Scholar
  34. Ough, C.S. (1983) Dimethyl dicarbonate and diethyl dicarbonate. In: Antimicrobials in Foods. (eds) Branen, A.L. and Davidson, P.M. Marcel Decker, New York, pp. 299–325.Google Scholar
  35. Peterson, R.G. (1976) Formation of reduced pressure in barrels during wine aging. Am. J. Enol. Vitic, 27, 80–81.Google Scholar
  36. Peyron, D. and Feuillat, M. (1985) Essais comparatifs de coves d’automaceration en Bourgogne. Rev. d’Oenol., 38, 7–10.Google Scholar
  37. Pilone. F.B. and Berg, H.W. (1956) Some factors affecting tartrate stability in wine. Am. J. Enol. Vitic, 16, 195–211.Google Scholar
  38. Pontallier, P. and Ribéreau-Gayon, P. (1983) Influence de l’aeration et du sulfitage sur l’evolution de la matiere colorante des vins rouges au cours de la phase d’elevage. Conn. Vigne Vin, 17, 105–120.Google Scholar
  39. Radier, F. and Brohl, K. (1984) The metabolism of several carboxylic acids by lactic acid bacteria. Z. Lebensm. Unter. Forsch., 174, 228–231.Google Scholar
  40. Rankine, B.C. (1963) Nature, origin and prevention of hydrogen sulphide aroma in wines. J. Sci. Food Agric, 14, 79–91.CrossRefGoogle Scholar
  41. Ratsimba B. and Gaillard, M. (1988) Determination de la stabilite des vins par le reperage de leur temperature de saturation. Rev. Fr. Oenol., 114, 43–48.Google Scholar
  42. Ribéreau-Gayon, P. (1974) The chemistry of red wine color. In The Chemistry of Winemaking, Ch. 3, (ed.) Webb, A.D. Am Chem Soc. Symp. Series No. 137. pp. 50-87.Google Scholar
  43. Ribéreau-Gayon, P. and Glories, Y. (1971) Determination de l’etat de condensation des tanins du vin rouge. C. R. Acad. Sci Paris., 273, 2369–2371.Google Scholar
  44. Ricardo da Silva, J.M. (1990) Separation and quantitative determination of grape and wine procyanidins by high performance reversed phase liquid chromatography. J. Sci. Food Agric, 53, 85–92.CrossRefGoogle Scholar
  45. Ricardo da Silva, J.M. Cheynier, V., Souquet, J.-M. and Moutounet, M. (1991) Interaction of grape seed procyanidins with various proteins in relation to wine fining. J. Sci. Food Agric, 57, 111–125.CrossRefGoogle Scholar
  46. Ricardo da Silva, J.M., Rosec, J.-Ph., Bourziex, M., Mourgues, J. and Moutounet, M. (1992) Dimer and trimer procyanidins in Carignan and Mourvedre grapes and red wines. Vitis, 31, 55–63.Google Scholar
  47. Ricker, R.W., Marois, J.J., Dlott, J.W., Bostock, R.M. and Morrison, J.C. (1991) Immunodetection and quantification of Botrytis cinerea on harvested wine grapes. Phytopathology, 81, 404–411.CrossRefGoogle Scholar
  48. Roggero, J.P., Ragonnet, B. and Coen, S. (1984) Analyse fine des anthocyanes des vins et des pelliculules de raisin par la technique HPLC. Etude de quelques cepages meridionaux. Vigne Vins, 327, 38–42.Google Scholar
  49. Rous, C. and Alderson, B. (1983) Phenolic extraction curves for white wine aged in French and American Oak Barrels. Am. J. Enol. Vitic, 34, 211–215.Google Scholar
  50. Salagoity-Auguste, M.-H. and Bertrand, A. (1984) Wine phenolics — analysis of low molecular weight components by high performance liquid chromatography. J. Sci. Food Agric, 35, 1241–1247.CrossRefGoogle Scholar
  51. Schutz, M. and Kunkee, R.E. (1977) Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am. J. Enol. Vitic., 28, 137–144.Google Scholar
  52. Scudamore-Smith, P.D., Hooper, R.L. and McLaran, E.D. (1990) Color and phenolic changes of Cabernet Sauvignon wine by simultaneous yeast/bacterial fermentation and extended pomace contact. Am. J. Enol. Vitic., 41, 51–61.Google Scholar
  53. Siegrist, J. (1985) Les tannins et les anthocyanes du pinot et les phenomenes de maceration. Rev. Oenol., 38, 11–13.Google Scholar
  54. Singleton, V.L. (1974) Some aspects of the wooden container as a factor in wine maturation. Ch. 12. In The Chemistry of Winemaking, (ed.) Webb, A.D. Am. Chem. Soc. Symp. Series No. 137. pp. 254-277.Google Scholar
  55. Singleton, V.L. (1988) Wine phenols. In Modern Methods of Plant Analysis, New Series, Vol. 6. (eds) Linkens, H.F. and Jackson, J.F. Springer-Verlag, Berlin. pp. 173–218.Google Scholar
  56. Singleton, V.L. and Draper, D.E. (1964) The transfer of polyphenolic compounds from grape seeds into wines. Am. J. Enol. Vitic, 15, 34–40.Google Scholar
  57. Singleton, V.L. and Troudsdale, E.K. (1992) Anthocyanin-tannin interactions explaining differences in polymeric phenols between white and red wines. Am. J. Enol. Vitic, 43, 63–70.Google Scholar
  58. Somers, T.C. (1971) The polymeric nature of wine pigments. Phytochemistry, 10, 2175–2186.CrossRefGoogle Scholar
  59. Somers, T.C. and Evans, M.E. (1979) Grape pigment phenomena: interpretation of major colour loss during vinification. J. Sci. Food Agric, 30, 623–633.CrossRefGoogle Scholar
  60. Somers, T.C. and Evans, M.E. (1986) Evolution of red wines. 1. Ambient influences on colour composition during early maturation. Vitis, 25, 31–39.Google Scholar
  61. Somers, T.C. and Verette, E. (1988) Phenolic composition of natural wines. In Modern Methods of Plant Analysis, New Series, Vol. 6, (eds) Linkens, H.F. and Jackson, J.F. Springer-Verlag, Berlin. pp. 219–257.Google Scholar
  62. Somers, T.C. and Wescombe, L.G. (1987) Evolution of red wines. 2. An assessment of the role of acetaldehyde. Vitis, 26, 27–36.Google Scholar
  63. Spettoli, P., Bottacin, A., Nuti, M.P. and Zamorani, A. (1982) Immobilization of Leuconostoc oenos ML 34 cells in calcium alginate gels and its application to wine technology. Am. J. Enol. Vitic., 33, 1–5.Google Scholar
  64. Thomas, C.S., Gubler, W.D., Silacci, M.W. and Miller, R. (1993a) Changes in the elemental sulfur residues on Pinot noir and Cabernet Sauvignon grape berries during the growing season. Am, J. Enol. Vitic, 44, 205–210.Google Scholar
  65. Thomas, C.S., Boulton, R.B., Silacci, M.W. and Gubler, W.D. (1993b) The effect of elemental sulfur, yeast strain and fermentation medium on the hydrogen sulfide production during fermentation. Am. J. Enol. Vitic, 44, 211–216.Google Scholar
  66. Thorngate, J. (1992) Flavan-3-ols and their polymers in grapes and wines: chemical and sensory properties. PhD. Dissertation, University of California, Davis.Google Scholar
  67. Timberlake, C.F. and Bridle, P. (1976) Interactions between anthocyanins, phenolic compounds and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic., 27, 97–105.Google Scholar
  68. Usseglio-Tomasset, L. (1976) Les colloides glucidique soluble des moutes et des vins. Conn. Vigne Vin, 10, 193–276.Google Scholar
  69. Van Balen, J. (1984) Recovery of anthocyanins and other phenols from converting grapes into wine. M.Sc. Thesis, University of California, Davis.Google Scholar
  70. Van Vuuren, H.J.J. and Dicks, L.M.T. (1993) Leuconostoc oenos: a review. Am. J. Enol. Vitic, 44, 99–112.Google Scholar
  71. Vos, P.J.A. and Gray, R.S. (1979) The origin and control of hydrogen sulfide during fermentation of grape must. Am. J. Enol. Vitic, 30, 187–197.Google Scholar
  72. Webb, R.B. and Ingraham, J.L. (1960) Induced malo-lactic fermentation. Am. J. Enol. Vitic, 11, 59–63.Google Scholar
  73. Weiller, H.G. and Radler, F. (1972) Vitamin-und Aminosaurebedorf von Milchsaurebakterien aus Wein und von Rebenblattern. Mitt. Rebe Wein Obst. Frucht., 22, 4–18.Google Scholar
  74. Weiller, H.G. and Radler, F. (1976) Uber den Aminosaurestoffwechsel von Milchsaurebakterien aus Wein. Z. Lebensm. Unters.-Forsch., 161, 259–266.CrossRefGoogle Scholar
  75. Wibowo, D., Eschenbruch, R., Davis, C.R., Fleet, G.H. and Lee, T.H. (1985) Occurrence and growth of lactic acid in wine: a review. Am. J. Enol. Vitic, 36, 302–313.Google Scholar
  76. Wibowo, D., Fleet, G.H., Lee, T.H. and Echenbruch, R.E. (1988) Factors affecting the induction of malolactic fermentation in red wines with Leuconostoc oenos. J. Appl. Microbiol., 64, 421–428.CrossRefGoogle Scholar
  77. Williams, L.A. and Boulton, R.B. (1983) Modeling and prediction of evaporative ethanol loss during wine fermentations. Am. J. Enol. Vitic., 34, 234–242.Google Scholar
  78. Würdig, G. (1988) Doppelsalzentsauerung — Hinweise zue Anwendung. Weinwirt. Technik, 124(2), 6–11.Google Scholar
  79. Würdig, G., Muller, T. and Friedrich, G (1982) Methode pour caracteriser la stabilite d’un vin vis-a-vis du tartre par la determination de la temperature de saturation. Bull. O.I.V., 55, 220–228.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. Boulton

There are no affiliations available

Personalised recommendations