Authenticity of fermented beverages

  • G. G. Martin
  • P. Symonds
  • M. Lees
  • M. L. Martin


The concept of authenticity of a particular food or beverage can usually be defined as conformity to a standard. This standard may arise from tradition, laws, reference compounds, industrial purchase specifications or other forms of written or non-written rules and/or traditions defining what a product is supposed to be in terms of origin, raw materials used, manufacturing process, aging, etc. A product is often non-authentic because inferior ingredients are used to cut production costs and increase profits.


Crassulacean Acid Metabolism Isotope Ratio Mass Spectrometry Grape Variety Cane Sugar Beet Molas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayräpää, T. (1967) Formation of higher alcohols from 14C-labelled valine and leucine. J. Inst. Brew. 73, 17–33.Google Scholar
  2. Bayanove, C. and Cordonnier, R. (1970) Recherches sur l’arôme du muscat. Profils aromatiques de cépages muscat et non muscat. Importance du linalol chez les muscats. Ann. Tech. Agric, 19, 95–105.Google Scholar
  3. Bertrand, A. (1993) Recueil des méthodes d’analyse des boissons spiritueuses, des alcools, de la fraction aromatique des boissons. Publication de l’Université de Bordeaux II.Google Scholar
  4. Braitberg, J.M. (1993) Le scandale du vin frelaté. Editions du Rocher.Google Scholar
  5. Brause, A.R. (1986) Nachweis von Apfel und Orangensaft Verfalschung mit Hilfe einer chemischen Matrix Test Methode. Flüssiges Obst, 53, 15.Google Scholar
  6. Bricout, J. (1973) Control of authenticity of fruit juices by isotopic analysis. J. Assoc. Off. Anal. Chem., 56, 739.Google Scholar
  7. Bricout, J. and Fontes, J.C. (1974) Distinction analytique entre sucre de canne et sucre de betterave. Ann. Fais. Exp. Chim., 716, 211–215.Google Scholar
  8. Calull, M., Marce, R.M., Guash, J. and Borrull, F. (1990) Determination of free amino acid content of varietal red wines from the Taragona region. A study of the varietal influence. Acta Alimentaria, 19, 47–53.Google Scholar
  9. Cantagrel, R. (1986) Application de l’analyse multidimensionnelle à la caractérisation des Cognacs par rapport aux autres eaux de vie du vin et alcools de vin. XIX Congress Int. Soc. Wine Winemakers (Santiago Chile).Google Scholar
  10. Chen, E.C.H. (1978) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. ASBC J., 36, 39–43.Google Scholar
  11. Datzberger, K., Steiner, I., Nashüttl, J. and Kroyer, G. (1991) Methods for fast analysis of anthocyanins and anthocyanidins in red wine. Z. Lebensm. Unters. Forsch., 193, 462–464.CrossRefGoogle Scholar
  12. Day, M.P., Zhang, B.L. and Martin, G.J. (1994). The use of trace element data to complement stable isotope methods in the characterization of grape musts. Am. J. Enol. Vitic, 45, 79–85.Google Scholar
  13. Delteil, D. and Jarry, J.M. (1991) Effets caractéristiques de deux souches de levures oenologiques sur la composition en éléments volatils de vins de Chardonnay. Rev. Fr. Oenol., 132, 41–46.Google Scholar
  14. Dunbar, J. (1982) A study of the factors affecting the 18O/16O ratio of the water of wine. Z. Lebensm. Unters Forsch., 2174, 355–359.CrossRefGoogle Scholar
  15. Edwards, M.A. and Amerine, M.A. (1977) Lead content of wines determined by atomic absorption spectrophotometry using flameless atomization. Am. J. Enol. Vitic, 28, 239–240.Google Scholar
  16. Estep, M.F. and Hoering, T.C. (1980) Biogeochemistry of the stable hydrogen isotopes. Geochim. Cosmochim. Acta, 44, 1197–1206.CrossRefGoogle Scholar
  17. Etievant, P., Schlich, P., Bouvier, J.C., Symonds, P. and Bertrand, A. (1988a) Varietal and geographic classification of French red wines in terms of elements, amino acids and aromatic alcohols. J. Sci. Food Agric, 45, 25–41.CrossRefGoogle Scholar
  18. Etievant P., Schlich, P. Bertrand, A., Symonds, P. and Bouvier, J.C. (1988b) Varietal and geographic classification of French red wines in terms of pigments and flavonoid compounds. J. Sci. Food Agric, 45, 39–54.CrossRefGoogle Scholar
  19. Farquhar, G.D., O’Leary, M.H. and Berry, J.A. (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant. Physiol., 9, 121–137.CrossRefGoogle Scholar
  20. Ferhi, A. and Letolle, R. (1977) Transpiration and evaporation as the principal factors in oxygen isotope variations of organic matter in land plants. Physiol. Veg., 15, 363–370.Google Scholar
  21. Forstel, H. (1978) The enrichment of 18O in leaf water under natural conditions. Radiat Environ. Biophys., 15, 323–344.CrossRefGoogle Scholar
  22. Garson, M.J. and Staunton, J. (1979) Some new NMR methods for tracing the fate of hydrogen in biosynthesis Chem. Soc. Rev., 8, 539–560.CrossRefGoogle Scholar
  23. Goiffon, J.P., Brun, M. and Bourrier, M.J. (1992) High performance liquid chromatography of red fruit anthocyanins. J. Chromatogr., 537, 101–121.Google Scholar
  24. Gonfiantini, (1978) Standards for stable isotope measurements in natural compounds. Nature, 271, 534–536.CrossRefGoogle Scholar
  25. Hebrero, E., Garcia-Rodriguez, C, Santos-Buelga, C. and Rivas-Gonzalo, J.C. (1989) Analysis of anthocyanins by high performance liquid chromatography. Diode array spectroscopy in a hybrid grape variety (Vitis vinifera × Vitis berlandieri 41 B). Am. J. Enol. Vitic, 40, 283–291.Google Scholar
  26. Hong, V. and Wrolstad, R.E. (1990) Characterization of anthocyanins containing colorants and fruit juices by HPLC/photodiode array detection. J. Agric. Food Chem., 38, 698–708.CrossRefGoogle Scholar
  27. Hutchinson, C.R. (1982) The use of isotopic hydrogen and nuclear magnetic resonance spectroscopic techniques for the analysis of biosynthetic pathways. J. Nat Prod., 45, 27–37.CrossRefGoogle Scholar
  28. Krueger, H.W. and Reesman, R.H (1982). Carbon isotope analyses in food technology. Mass Spectrom. Rev., 1, 205–236.CrossRefGoogle Scholar
  29. Kwan, W.O. and Kowalski, B.R. (1980) Pattern recognition analysis of gas Chromatographic data. Geographic classification of wines of Vitis Vinifera cv. Pinot noir from France and the United States. J. Agric. Food Chem., 28, 356–359.CrossRefGoogle Scholar
  30. Kwan, W.O., Kowalski, R. and Skogerboe, R.K. (1979) Pattern recognition analysis of elemental data. Wines of Vitis Vinifera cv Pinot noir from France and the United States. J. Agric. Food Chem., 11, 1321–1326.CrossRefGoogle Scholar
  31. Larice, J.L., Archier, P., Rocheville-Divorne, C, Cohen, S. and Roggero, J.P. (1989) Composition anthocyanique des cépages. Essai de classification sur trois ans par analyse en composantes principales et étude des variations annuelles de cépages de même provenance. Rev. Fr. Oenol., 121, 7–12.Google Scholar
  32. Lea, A.G.H. (1978) The analysis of cider phenolics. Ann. Nutr. Alim., 32, 1051–1061.Google Scholar
  33. Lee, H.S. and Hong, V. (1992) Chromatographic analysis of anthocyanins. J. Chromatog., 624, 221–234.CrossRefGoogle Scholar
  34. Maarse, H., Slump, P., Tas, A.C. and Schaefer, J. (1987) Classification of wines according to type and region based on their composition. Z. Lebensm. Unters Forsch., 184, 198–203.CrossRefGoogle Scholar
  35. MacDonald, J. (1981) The lead contamination problem with emphasis on the lead content of wine, Am. J. Enol. Vitic, 32, 219–222.Google Scholar
  36. Martin, G.J. (1990) The chemistry of chaptalization. Endeavour, 14, 137–143.CrossRefGoogle Scholar
  37. Martin, G.J. (1991) La contribution de la résonance magnétique nucléaire et de l’analyse isotopique à l’authentification des alcools et eaux de vie. Bull. CIDEAO, 11, 65–71.Google Scholar
  38. Martin, G.J. and Martin, M.L. (1981) Deuterium labelling at the natural abundance level as studied by high field quantitative 2H-NMR. Tetrahedron Lett., 22, 3525–3528.CrossRefGoogle Scholar
  39. Martin, G.J. and Martin, M.L. (1983) Determination par résonance magnétique nucléaire du deutérium du fractionnement isotopique spécifique naturel. Application à la détection de la chaptalisation des vins. J. Chim. Phys., 80, 293–297.Google Scholar
  40. Martin, G.J., Martin, M.L., Mabon, F. and Michon, M.J. (1982a) Natural selective 2H labelling applied to the study of chemical mechanisms; labelling without enrichment. J, Chem. Soc. Chem. Commun., 616-617.Google Scholar
  41. Martin, G.J., Martin, M.L., Mabon, F., Michon, M.J. (1982b) Identification of the origin of natural alcohols by natural abundance hydrogen-2 nuclear magnetic resonance. Analytical. Chemistry, 54, 2380–2382.CrossRefGoogle Scholar
  42. Martin, G.J., Martin, M.L., Mabon, F. and Bricout, J. (1982c) A new method for the identification of the origin of natural products. Quantitative 2H NMR at the natural abundance level applied to the characterization of anetholes. J. Am. Chem. Soc, 104, 2658.CrossRefGoogle Scholar
  43. Martin, G.J., Martin, M.L., Mabon, F. and Michon, M.J. (1983) A new method for the identification of the origin of ethanols in grain and fruit spirits: high field quantitative deuterium nuclear magnetic resonance at the natural abundance level. J. Agric. Food Chem., 31, 311–315.CrossRefGoogle Scholar
  44. Martin, G.J., Guillou, C., Martin, M.L., Cabanis, M.T., Tep, Y. and Aerny, J. (1988) Natural factors of isotope fractionation and the characterization of wines. J. Agric. Food Chem., 36, 316–322.CrossRefGoogle Scholar
  45. Martin, G.J., Danho, D. and Vallet, C. (1991) Natural isotope fractionation in the discrimination of sugar origins. J. Sci. Food Agric, 56, 419–434.CrossRefGoogle Scholar
  46. Martin, G.J., Martin, M.L. and Zhang, B.L. (1992). Site specific natural isotope fractionation of hydrogen in plant products studied by nuclear magnetic resonance. Plant Cell Environ., 15, 1037–1050.CrossRefGoogle Scholar
  47. Martin, G.G., Remaud, G. and Martin, G.J. (1993) Isotopic methods for control of natural flavours authenticity. Flavour Fragrance J., 8, 97–107.CrossRefGoogle Scholar
  48. Martin-Alvarez, P. J. and Herranz, A. (1991) Application of multivariate statistical geographic methods to the differentiation of gin brands. J. Sci. Food Agric., 57, 263–272.CrossRefGoogle Scholar
  49. Medina, B. and Sudraud, P. (1980) Teneurs des vins en chrome et en nickel. Causes d’enrichissement. Conn. Vigne Vin, 14, 79–96.Google Scholar
  50. Medina, B. and Van Zeller, A.L. (1984) Differenciation des vins de trois régions de France. Conn. Vigne Vin, 18, 225–235.Google Scholar
  51. Miyashita, Y., Ishikawa, M. and Sasaki, S. (1989) Classification of brandies by pattern recognition of chemical data. J. Sci. Food Agric., 49, 325–333.CrossRefGoogle Scholar
  52. Monson, K.D. and Hayes, J.M. (1980) Biosynthetic control of the natural abundance of carbon-13 at specific positions within fatty acids in Escherichia coli. J. Biol. Chem., 225, 11435–11441.Google Scholar
  53. Moret, I., Di Leo F., Giromini, V. and Scarponi, G. (1984) Multiple, discriminant analysis in the analytical differentiation of Venetian white wines. Application to several vintages years and comparison with the k nearest-neighbor classification. J. Agric. Food Chem., 32, 329–333.CrossRefGoogle Scholar
  54. Mosandl, A., Hener. U., Hagenauer-Hener, U. and Kustermann, A. (1989) Direct enantiomer separation of chiral γ-lactones from food and beverages by multidimensional gas chromatography, J. High. Resolution Chromatog., 12, 532–536.CrossRefGoogle Scholar
  55. Noakes, J. and Culp, R.A. (1990) Identification of isotopically manipulated cinnamic aldehyde and benzaldehyde, J. Agric. Food Chem., 32, 1249–1255.Google Scholar
  56. Noble, A.C., Flath, R.A. and Forrey, R.R. (1980) Wine headspace analysis. Reproducibility and application to varietal classification. J. Agric. Food Chem., 28, 346–353.CrossRefGoogle Scholar
  57. O’Leary, M.H. (1988) Carbon isotopes in photosynthesis Bioscience, 38, 327–336.Google Scholar
  58. Park, R. and Epstein, S. (1960) Carbon isotope fractionation during photosynthesis Geochim. Cosmochim. Acta, 21, 110–126.CrossRefGoogle Scholar
  59. Rapp, A. and Makowetz, A. (1989) Anwendung der NMR-spektroskopie in der Weinanalytik Lebensmittelchem. Gerichtl. Chem., 43, 73–75.Google Scholar
  60. Raven, J.A. (1992) Present and potential uses of the natural abundance of stable isotopes in plant science, with illustrations from the marine environment. Plant Cell Environ., 15, 1083–1091.CrossRefGoogle Scholar
  61. Reazin, G., Scales, H. and Andreasen, A. (1973) Production of higher alcohols from threonine and isoleucine in alcoholic fermentations of different types of grain mash. J. Agric. Food Chem., 21, 50–54.CrossRefGoogle Scholar
  62. Riberéau-Gayon, P. (1978) Plant Phenolics. Dunod, Paris.Google Scholar
  63. Roggero, J.P., Coen, S. and Archier, P. (1990) Wine phenolics, optimization of HPLC analysis. J. Liquid Chromatogr., 13, 2593–2603.CrossRefGoogle Scholar
  64. Rommel, A., Heatherbell, D.A. and Wrolstad, R.E. (1990) Red raspberry juice and wine: effect of processing and storage on anthocyanin pigment composition, color and appearance. J. Food Sci., 55, 1011–1017.CrossRefGoogle Scholar
  65. Rossmann, A. and Schmidt, H.L. (1989) Nachweis der Herkunft von ethanol und der zuckerung von wein durch positionelle Wasserstoff-und kohlenstoff — isotopenverhältnismessung. Z Lebensm. Unters. Forsch., 188, 434–438.CrossRefGoogle Scholar
  66. Santos, C., Munoz, S.S., Gutierrez, Y., Hebrero, E., Vicente, J.L., Galindo, P. and Rivas, J.C. (1991) Characterization of young red wines by application of HJ Biplot analysis of anthocyanin profiles J. Agric. Food Chem., 39, 1086–1090.CrossRefGoogle Scholar
  67. Scarponi, G., Moret, I., Capodaglio, G. and Cescon, P. (1982). Multiple discriminant analysis in the analytical differentiation of Venetian wines. A reelaboration with addition of data from samples of 1979 vintage Prosecco wine. J. Agric. Food Chem., 30, 1135-1140.Google Scholar
  68. Schmidt, H.L., Winker, F.J., Latzko, E. and Wirth, E. (1978) 13C-kinetic isotope effects in photosynthetic carboxylation reactions and δ13C values of plant material Isr. J. Chem., 17, 223–224.Google Scholar
  69. Schreier. P., Drawert, F. and Junker, A. (1976) Identification of volatile constituents from grapes. J. Agric. Food Chem., 24, 331.CrossRefGoogle Scholar
  70. Seeber, R., Sferlazzo, G., Leardi, R., Dalla Serra, A.D. and Versini, G. (1991) Multivariate data analysis in classification of musts and wines of the same variety according to vintage year. J. Agric. Food. Chem., 39, 1764–1769.CrossRefGoogle Scholar
  71. Simpson, T.J. (1975) Carbon-13 nuclear magnetic resonance in biosynthetic studies. Chem. Soc. Rev., 497-522.Google Scholar
  72. Smith, B.N. (1975) Carbon and hydrogen isotopes of sucroses from various sources. Naturwissenchaften, 62, 390.CrossRefGoogle Scholar
  73. Sternberg, L.O., de Niro M.J. and Keeley, J.E. (1984) Hydrogen, oxygen and carbon isotope ratios of cellulose from submerged aquatic crassulacean acid metabolism and non-crassulacean acid metabolism plants. Plant Physiol., 76, 69–70.CrossRefGoogle Scholar
  74. Stothers, J.B. (1974) In Topics in carbon-13 NMR spectoscopy, Vol. 1, 13CNMR Studies of Reaction Mechanisms and Reactive Intermediates, (ed., Levy, G.C.) Wiley Inter-science, New York, pp. 229–2Google Scholar
  75. Sudraud. P. and Koziet, J. (1978) Recherche de nouveaux critères analytiques de caractérisation des vins. Ann. Nutr. Alim., 32, 1063–1072.Google Scholar
  76. Suomalainen, H. and Lehtonen, M. (1979) The production of aroma compounds by yeast. J. Inst. Brew., 85, 149–156.Google Scholar
  77. Symonds, P. and Cantagrel, R. (1978) Analyse par HPLC des anthocyanes des moûts et des vins. Bulletin Liaison Groupe Polyphenols, 8, 379.Google Scholar
  78. Symonds, P. and Cantagrel, R. (1982) Application de l’analyse discriminante à la différenciation des vins Ann. Fals. Exp. Chim., 75, 63–74.Google Scholar
  79. Tapias, R.M., Larrechi, M.S., Guasch, J., Rubio, J. and Rius, F.X. (1986). Enological parameters and pattern recognition methods in the geographic dimerentiation of Spanish red wines. Am. J. Enol. Vitic, 37, 195–201.Google Scholar
  80. Test Achats (1992) Magazine N° 349 Nov. pp. 44-48.Google Scholar
  81. Vasconcelos, A.M.P. and Chaves das Neves, H.J. (1989) Characterization of elementary wines of Vitis vinifera varieties by pattern recognition of free amino acid profiles. J. Agric. Food Chem., 37, 931–937.CrossRefGoogle Scholar
  82. van der Voet, H., Doornbos, D.A., Meems, M. and van de Haar, G. (1984) The use of pattern recognition techniques in chemical differentiation between Bordeaux and Bourgogne wines Anal. Chem. Acta, 159, 159–171.CrossRefGoogle Scholar
  83. Whiting, G. (1976) Organic acid metabolism of yeasts during fermentation of alcoholic beverages. A review. J. Inst. Brew., 82, 84–92.Google Scholar
  84. Wilson, L.A., Ding, J.M. and Woods, A.E. (1991) Gas Chromatographic determination and pattern recognition analysis of methanol and fusel oil concentrations in whiskeys. J. Assoc. Off. Anal. Chem., 74, 248–256.Google Scholar
  85. Wulf, L. and Nagel, C.W. (1978) High pressure liquid chromatography separation of anthocyanins of Vitis vinifera. Am. J. Enol. Vitic, 29(1), 42–49.Google Scholar
  86. Yakir, D. (1992) Variations in the natural abundance of oxygen 18 and deuterium in plants carbohydrates Plant Cell Environ., 15, 1005–1020.CrossRefGoogle Scholar
  87. Ziegler, H., Osmond, C.B., Stichler, W. and Trimborn, P. (1976) Hydrogen isotope discrimination in higher plants: correlations with photosynthetic pathway and environment. Planta, 128, 85–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • G. G. Martin
  • P. Symonds
  • M. Lees
  • M. L. Martin

There are no affiliations available

Personalised recommendations