Advertisement

Phytoremediation and Bioremediation of Soils and Waters

  • D. Max Roundhill
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Toxic metals are problematic in soils because not only are they adsorbed into the zeolite soil structure, but they are also absorbed into the humus and biomass present in soils. These humic and fulvic substances in soils contain compounds that act as chelating agents to these metals, thereby contributing to the difficulty of their removal. In addition, these substances often contain redox active agents that can convert the adsorbed metals into ones that have different oxidation states, or reduce metal ions down to the metallic state. Although the removal of metals from soils poses several challenges, the presence of good chelating agents in humic and fulvic substances is one of the obstacles that must be overcome if phytoremediation or bioremediation is to be the method of choice for metal removal. Phytoremediation is the use of green plants to remove pollutants from the environment. Two recent reviews have been written on this subject.1,2 Among the types of phytoremediation currently in use are phytoextraction and rhizofiltration. Phytoextraction is defined as the use of metal-accumulating plants that concentrate them into the harvestable parts. Rhizofiltration is the use of plant roots to absorb metals from aqueous waste streams. Phytoextraction can be carried out either with or without added chelate complexant to assist in removing the metals. In certain cases the addition of chelating agents enhances the accumulation of metals by plants, especially if the chelate has a strong affinity for the targeted metal. Nevertheless, a consideration when using this method is the requirement that the chosen chelate must be biodegradable or readily removed from the contaminated site. Alternatively, phytoremediation can rely only on the physiological processes that allow plants themselves to accumulate metals. A disadvantage of this approach is that growth rates are slow, and the selectivity for particular metals is likely to be low. In the future, however, genetic engineering could be useful in producing plants that have both higher growth rates and metal selectivities. Bioremediation involves the use of biological remedies for pollution reduction.3 For metals this detoxification process must involve processes such as the oxidation or reduction of the metal center to make it either more water soluble, so that it precipitates and can be removed in solid form, or converted to a more volatile form that can be removed in the gas phase. In choosing a bioremediation strategy for metals, the biological system must be able to tolerate the concentration of metal that is present at the site.

Keywords

Humic Acid Arbuscular Mycorrhizal Panicum Virgatum Water Hyacinth Indian Mustard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Salt, R. D. Smith, I. Raskin, Ann. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49, 643.CrossRefGoogle Scholar
  2. 2.
    E. L. Kruger, T. A. Anderson, J. R. Coats, ACS Sympos. Ser., Vol. 664, Phytoremediation of Soil and Water Contaminants, American Chemical Society, 1997.Google Scholar
  3. 3.
    M. J. R. Shannon, R. Unterman, Ann. Rev. Microbiol., 1993, 47, 715.CrossRefGoogle Scholar
  4. 4.
    S. L. Brown, R. L Chaney, C. A. Loyd, J. S. Angle, J. A. Ryan, Environ Sci. Technol., 1996, 30, 3508.CrossRefGoogle Scholar
  5. 5.
    T. E. Pawlowska, R. L. Chaney, M. Chin, I Charvat, Appl. Environ. Microbiol., 2000, 66, 2526.Google Scholar
  6. 6.
    S. L. Brown, R. L. Chaney, J. S. Angle, A. J. M. Baker, Soil Sci. Soc. Am. J., 1995, 59, 125.Google Scholar
  7. 7.
    A. Leusch, Z. R. Holan, B. Volesky, J. Chem. Tech. Biotechnol., 1995, 62, 279.CrossRefGoogle Scholar
  8. 8.
    D. C. Herman, J. F. Artiola, R. M. Miller, Environ. Sci. Technol., 1995, 29, 2280.Google Scholar
  9. 9.
    M. S. Masri, R. W. Reuter, M. Friedman, J. Appl. Polym. Sci., 1974, 18, 675.CrossRefGoogle Scholar
  10. 10.
    J. P. Pinheiro, A. M. Mota, M. L. Simoes Goncalves, Anal. Chim. Acta, 1994, 284, 525.CrossRefGoogle Scholar
  11. 11.
    H. Shahandeh, L. R. Hossner, Int. J. Phytoremed., 2000, 2, 31.CrossRefGoogle Scholar
  12. 12.
    R. A. Sheffington, P. R. Shewry, P. Peterson, Planta, 1976, 132, 209.CrossRefGoogle Scholar
  13. 13.
    R. J. Bartlett, Adv. Environ. Sci. TechnoL, 1988, 20, 267.Google Scholar
  14. 14.
    D. E. Salt, M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, L Chet, I. Raskin, Biotechnol., 1995, 13, 468.CrossRefGoogle Scholar
  15. 15.
    C. M. Lytle, F. W. Lytle, N. Yang, I-H. Qian, D. Hansen, A. Zayed, N. Terry, Environ. Sci. Technol., 1998, 32, 3087.CrossRefGoogle Scholar
  16. 16.
    L D. Kleiman, D. H. Cogliatti, Enivron. Technol., 1998, 19, 1127.CrossRefGoogle Scholar
  17. 17.
    P. Chandra, S. Sinha, V. N. Rai, ACS Sympos. Ser., 1997, 664, 274.CrossRefGoogle Scholar
  18. 18.
    S. D. Ebbs, L. V. Kochian, Environ. Sci. Technol., 1998, 32, 802.CrossRefGoogle Scholar
  19. 19.
    J. Chen., J. W. Huang, T. Caspar, S. D. Cunningham, ACS Sympos. Ser., 1997, 664, 264.CrossRefGoogle Scholar
  20. 20.
    S. L. Brown, R. F. Chaney, S. J. Angle, A. J. M. Baker, Environ. Sci. Technol., 1995, 29, 1581.CrossRefGoogle Scholar
  21. 21.
    B. C. Wolverton, R. C. McDonald, EHP, Environ. Health Perspect., 1978, 27, 161.CrossRefGoogle Scholar
  22. 22.
    Y. L. Zhu, E. A. H. Pilon-Smits, L. Jovanin, N. Terry, Plant Physiol., 1999, 119, 73.CrossRefGoogle Scholar
  23. 23.
    K. G. Stanhope, S. D. Young, J. J. Hutchinson, R. Kamath, Environ. Sci. Technol., 2000, 34, 4123.CrossRefGoogle Scholar
  24. 24.
    J. W. Huang, J. Chen, S. D. Cunningham, ACS Sympos. Ser., 1997, 664, 283.CrossRefGoogle Scholar
  25. 25.
    A. Kayser, K. Wenger, A. Keller, W. Attinger, H. R. Felix, S. K. Gupta, R. Schulin, Environ. Sci. Technol., 2000, 34, 1778.CrossRefGoogle Scholar
  26. 26.
    J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, J. A. Henning, M. S. Townsend, Solv. Extr. lon Exch., 1996, 14, 119.CrossRefGoogle Scholar
  27. 27.
    J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, J. A. Henning, M. S. Townsend, J. Hazard. Mater., 1996, 48, 181.CrossRefGoogle Scholar
  28. 28.
    J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, I. Cano-Aguilera, J. A. Henning, M. S. Townsend, J. Hazard. Mater., 1996, 49, 205.CrossRefGoogle Scholar
  29. 29.
    J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, O Rodriguez, J. Hazard. Mater., 1997, 56, 169.CrossRefGoogle Scholar
  30. 30.
    S. D. Cunningham, J. R. Shann, D. E. Crowely, T. A. Anderson, ACS Sympos. Ser. 1997, 664, 2.CrossRefGoogle Scholar
  31. 31.
    J. L. Gardea-Torresdey, L. Tang, J. M. Salvador, J. Hazard Mater., 1996, 48, 191.CrossRefGoogle Scholar
  32. 32.
    J. L. Gardea-Torresdey, I. Cano-Aguilera, R. Webb, K. J. Tiemann, F. Gutiérrez-Corona, J. Hazard. Mater., 1996, 48, 171.CrossRefGoogle Scholar
  33. 33.
    J. L. Gardea-Torresdey, A. Hernandez, K. J. Tiemann, J. Bibb, O. Rodriguez, J. Hazard. Substance Res. Vol 1, 1997 Kansas State Univ. p.3–1.Google Scholar
  34. 34.
    J. L. Gardea-Torresdey, J. H. Gonzalez, K. J. Tiemann, O. Rodriguez, G. Games, J. Hazard Mater., 1998, 57, 29.CrossRefGoogle Scholar
  35. 35.
    J. L. Gardea-Torresdey, K. J. Tiemann, G. Gamez, K. Dokken, J. Hazard. Mater., 1999, B69, 41.CrossRefGoogle Scholar
  36. 36.
    K. J. Tiemann, J. L. Gardea-Torresdey, G. Gamez, K. Dokken, S. Sias, M. W. Renner, L. R. Furenlid, Environ Sci. Technol., 1999, 33, 150.CrossRefGoogle Scholar
  37. 37.
    K. J. Tiemann, J. L. Gardea-Torresdey, G. Gamez, K. Dokken, I. Cano-Aguilera, M. W. Renner, L. R. Furenlid, Environ. Sci. Technol., 2000, 34, 693.CrossRefGoogle Scholar
  38. 38.
    J. L. Gardea-Torresdey, K. J. Tiemann, G. Gamez, K. Dokken, N. E. Pingitore, Adv. Environ. Res., 1999, 3, 83.Google Scholar
  39. 39.
    K. G. Stanhope, S. D. Young, J. J. Hutchinson, R. Kamath, Environ. Sci. Technol., 2000, 34, 4123.CrossRefGoogle Scholar
  40. 40.
    J. A. Entry, L. S. Watrud, R. S. Manasse, N. C. Vance, ACS Sympos. Ser., 1997, 664, 299.CrossRefGoogle Scholar
  41. 41.
    J. M. Tobin, J. C Roux, Water Res., 1998, 32, 1407.CrossRefGoogle Scholar
  42. 42.
    J. M. Chen, O. J. Hao, J. Chem. Tech. Biotech., 1997, 69, 70.CrossRefGoogle Scholar
  43. 43.
    N. Verma, R. Rehal, J. Ind. Pollut. Control, 1996, 12, 55.Google Scholar
  44. 44.
    M. M. Alves, C. G. G. Beca, R. G. De Carvalho, J. M. Castanheira, M. C. S. Pereira, Water Res., 1993, 27, 1333.CrossRefGoogle Scholar
  45. 45.
    D. C. Sharma, C. F. Forster, Water Res., 1993, 27, 1201.CrossRefGoogle Scholar
  46. 46.
    S. Niyogi, T. E. Abraham, S. V. Ramakrishna, J. Sci. Ind. Res., 1998, 57, 809.Google Scholar
  47. 47.
    D. Kratochvil, P. Pimentel, B. Volesky, Environ. Sci. Tech., 1998, 32, 2693.Google Scholar
  48. 48.
    M. Zhao, J. R. Duncan, Biotech. Appl. Biochem., 1997, 26, 179.Google Scholar
  49. 49.
    S. Samantaroy, A. K. Mohanty, M. Misra, J. Appl. Polyp. Sci., 1997, 66, 1485.CrossRefGoogle Scholar
  50. 50.
    M. J. R. Shannon, R. Unterman, Ann. Rev. Microbiol., 1993, 47, 715.CrossRefGoogle Scholar
  51. 51.
    K. Kashefi, D. R. Lovely, Appl. Environ. Microbiol., 2000, 66, 1050.CrossRefGoogle Scholar
  52. 52.
    S. N. Gray, Biochem Soc. Trans., 1998, 26, 666.Google Scholar
  53. 53.
    G. Andrews, Biotechnol. Prog., 1990, 6, 225.CrossRefGoogle Scholar
  54. 54.
    J. W. Talley, P. M. Sleeper, Ann. N. Y. Acad. Sci., 1997, 829, 16.CrossRefGoogle Scholar
  55. 55.
    B. Fox, C. T. Walsh, J. Biol Chem., 1982, 257, 2498.Google Scholar
  56. 56.
    C. L. Rugh, H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, R. B. Meagher, Proc. Natl. Acad. Sci., 1996, 93, 3182.CrossRefGoogle Scholar
  57. 57. J. S. Chang, J. Hong, O. A. Ogunseitan, Biotechnol. Prog.,1993 9,526.Google Scholar
  58. 58.
    J. K.Blais, R. D. Tyagi, J. C. Auclair, C. P. Huang, Water Sci. Technol. Water Qual. Im., ‘82, Pt.1 1992, 26, 197.Google Scholar
  59. 59.
    H. Seidel, J. Ondruschka, P. Morgenstern, U. Stottmeister, Water Sci. Technol., 1998, 37, 387.CrossRefGoogle Scholar
  60. 60.
    M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, G. W. Bailey, Appl. Environ Microbiol., 1989, 55, 3143.Google Scholar
  61. 61.
    H. Tan, J. T. Champion, J. F. Artiola, M. L. Brusseau, R. M. Miller, Environ. Sci. Technol., 1994, 28, 2402.Google Scholar
  62. 62.
    D. C. Hermann, J. F. Artiola, R. M. Miller, Environ Sci. Technol., 1995, 29, 2280.Google Scholar
  63. 63.
    C. L. Wang, P. C. Michels, S. C. Dawson, S. Kitisakkul, J. A. Baross, J. D. Keasling, D. S. Clark, Appl. Environ. Microbiol., 1997, 63, 4075.Google Scholar
  64. 64.
    J.-S. Chang, J.-C. Huang, BiotechnoLProg., 1998, 14, 735.Google Scholar
  65. 65.
    J.-S. Chang, J.-C. Huang, C.-C. Chang, T.-J. Tarn, Water Sci. Technol., 1998, 38, 171.Google Scholar
  66. 66.
    J. L. Gardea-Torresdey, I. Cano-Aguilera, R. Webb, F. Gutierrez-Corona, Environ. Toxicol. Chem., 1997, 16, 435.Google Scholar
  67. 67.
    P. K. Sharma, D. L. Bulkwill, A. Frenkel, M. A. Vairavamurthy, Appl. Environ. Microbiol., 2000, 66, 3083.CrossRefGoogle Scholar
  68. 68.
    P. Samuelson, H. Wernérus, M. Svedberg, S. Stahl, Appl. Environ. Microbiol., 2000, 66, 1243.CrossRefGoogle Scholar
  69. 69.
    L. E. Macaskie, Crit. Rev. Biotechnol., 1991, 11, 41.CrossRefGoogle Scholar
  70. 70.
    L. E. Macaskie, A. C. R. Dean, Adv. Biotechnol. Processes, 1989, 12, 159.Google Scholar
  71. 71.
    D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, E. R. Landa, Nature, 1991, 350, 413.CrossRefGoogle Scholar
  72. 72.
    Y. A. Gorby, D. R. Lovely, Environ. Sci. Technol., 1992, 26, 205.CrossRefGoogle Scholar
  73. 73.
    D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 1992, 58, 850.Google Scholar
  74. 74.
    D. R. Lovley, E. J. P. Phillips, Environ Sci Technol., 1992, 26, 2228.CrossRefGoogle Scholar
  75. 75.
    L. E. Macaskie, G. Basnakova, Environ. Sci. Technol., 1998, 32, 184.CrossRefGoogle Scholar
  76. 76.
    D. R. Lovley, Ann. Rev. Microbiol., 1993, 47, 263.CrossRefGoogle Scholar
  77. 77.
    T. Suzuki, N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, M. Okazaki, J. Bacteriol., 1992, 174, 5340.Google Scholar
  78. 78.
    C. P. Wang, T. Mori, K. Komori, Appl. Environ. Microbiol., 1989, 55, 1665.Google Scholar
  79. 79.
    D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 1994, 60, 726.Google Scholar
  80. 80.
    L. Fude, B. Harris, M. E. Urrutia, T. J. Beveridge, Appl. Environ. Microbiol., 1994, 60, 1525.Google Scholar
  81. 81.
    A. Trivedi, Bioremediation of Hazardous Metals,AiResearch, Los Angeles Division.Google Scholar
  82. 82. The Hazard. Waste Consultant,1995 (Jan/Feb),Li.Google Scholar
  83. 83.
    H. Shen, Y-T. Wang, J. Environ. Eng., 1995, 121, 798.CrossRefGoogle Scholar
  84. 84.
    H. Shen, P. H. Pritchard, G. W. Sewell, Environ. Sci. Technol., 1996, 30, 1667.CrossRefGoogle Scholar
  85. 85.
    C. Solisio, A. Lodi, A. Converti, M. Del Borgi, Chem. Biochem. Eng. Quarterly, 1998, 12, 45.Google Scholar
  86. 86.
    O. Saltabas, G. Akcin, Toxicol. Environ Chem., 1994, 43, 163.CrossRefGoogle Scholar
  87. 87.
    O. Saltabas, G. Akcin, Toxicol. Environ Chem., 1994, 41, 131.CrossRefGoogle Scholar
  88. 88.
    K. Komori, A. Rivas, K. Toda, H. Ohtake, Biotech. Bioeng., 1990, 35, 951.CrossRefGoogle Scholar
  89. 89.
    Y-T. Wang, E. M. N. Chirwa, Proc. Mid-Atlantic. Ind. Hazard Waste Conf, 1997, 29, 32.Google Scholar
  90. 90.
    D. R. Lovley, Ann. Rev. Microbiol., 1993, 14, 158.Google Scholar
  91. 91.
    H. Shen, Y. T. Wang, Appl. Environ. Microbiol., 1995, 61, 2754.Google Scholar
  92. 92.
    M. S. Elovitz, W. Fish, Environ. Sci. Technol., 1994, 28, 2161.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. Max Roundhill
    • 1
  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations