Skip to main content

Benefits of Polyandry: A Life History Perspective

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 33))

Abstract

Bateman’s principle has been widely interpreted to imply that females gain no fitness benefits from polyandry (Bateman, 1948) and, therefore, should not be expected to mate multiply (here defined as mating with more than one male). Nevertheless, it is increasingly clear that females of many, if not most, taxa do copulate with multiple males (e.g. Birkhead and Wier, 1998). Moreover, polyandry is widespread despite considerable costs, including wasted time and energy, increased risk of predation and disease, potential damage caused by male seminal fluids and copulatory organs, and even death (Keller and Reeve, 1995; Eberhard, 1996). Despite these associated costs, females of diverse taxa not only accept several mates but also actively solicit multiple copulations in many instances (Birkhead and Moller, 1998). As evidence of diverse potential benefits associated with polyandry now accumulates, the assumption that females should not mate multiply because they cannot increase offspring numbers by doing so appears questionable. Importantly, since females have greater potential than males to influence the quality of their offspring, and investment in current reproduction has consequences for future reproductive attempts, they should be expected to optimise offspring numbers rather than maximise numbers produced in any given reproductive attempt (Roff, 1992; Stearns, 1992). Moreover, the relationship between female lifetime reproductive success and offspring numbers and/or size may not be as straightforward as is generally assumed (e.g. Madsen and Shine, 1998; Stockley and Macdonald, 1998). To suggest that females should not mate multiply simply because they cannot increase offspring numbers in a given reproductive attempt by doing so is therefore to confuse the currency of male and female fitness, and thereby to considerably under-estimate the complexity of female reproductive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcock, J., 1989, Animal Behavior: An Evolutionary Perspective, 4th edition, Sinaur & Associates, Sunderland, Mass.

    Google Scholar 

  • Alcock, J., Barrows, E. M., Gordh, G., Hubbard, L. J., Kirkendall, L., Pyle, D. W., Ponder, T. L., and Zalom, R G., 1978, The ecology and evolution of male reproductive behaviour in the bees and wasps, Zool. J. Linn. Soc. 64: 293–326.

    Google Scholar 

  • Arnqvist, G., 1989, Multiple mating in the water strider: mutual benefit or intersexual conflict?, Anim. Behay. 38: 749–756.

    Google Scholar 

  • Arnqvist, G., 1997, The evolution of water strider mating systems: causes and consequences of sexual conflict, in: The Evolution of Mating Systems in Insects and Arachnids ( J. C. Choe and B. J. Crespi, eds.), pp. 146–163, Cambridge University Press, Cambridge.

    Google Scholar 

  • Arnqvist, G., and Rowe, L., 1995, Sexual conflict and arms races between the sexes: a morphological adaptation for control of mating in a female insect, Proc. R. Soc. Lond., B 261: 123–127.

    Google Scholar 

  • Arnqvist, G., and Nilsson, T., 2000, The evolution of polyandry: multiple mating and female fitness in insects, Anim. Behay. 60: 145–164.

    Google Scholar 

  • Baer, B., and Schmid-Hempel, P., 1999, Experimental variation in polyandry affects parasite loads and fitness in a bumble bee, Nature 397: 151–154.

    CAS  Google Scholar 

  • Ball, M. A., and Parker, G. A., 1996, Sperm competition games: external fertilisation and `adaptive’ infertility, J. Theor. Biol. 180: 141–150.

    PubMed  CAS  Google Scholar 

  • Bateman, A. J., 1948, Intrasexual selection in Drosophila, Heredity 2: 349–368.

    PubMed  CAS  Google Scholar 

  • Birkhead, T. R., and Moller, A. E,1992, Sperm Competition in Birds: Evolutionary Causes and Consequences,Academic Press, London.

    Google Scholar 

  • Birkhead, T. R., and Moller, A. P, 1998, Sperm Competition and Sexual Selection, Academic Press, London.

    Google Scholar 

  • Birkhead, T. R., Moller, A. P., and Sutherland, W. J., 1993, Why do females make it so difficult for males to fertilize their eggs?, J. Theor. Biol. 161: 51–60.

    Google Scholar 

  • Birkhead, T. R., Martinez, J. G., Burke, T., and Froman, D. P., 1999, Sperm mobility determines the outcome of sperm competition in the domestic fowl, Proc. R. Soc. Lond., B 266: 1759–1764.

    CAS  Google Scholar 

  • Bishop, J. D. D., Jones, C. S., and Noble, L. R., 1996, Female control of paternity in the internally fertilizing compound ascidian Diplosoma listeriannum. II. Investigation of male mating success using RAPD markers, Proc. R. Soc. Lond., B 263: 401–407.

    Google Scholar 

  • Boomsma, J. J., 1996, Split sex ratios and queen-male conflict over sperm allocation, Proc. R. Soc. Lond., B 263: 697–704.

    Google Scholar 

  • Borries, C., Launhardt, K., Epplen, C., Epplen, J. T., and Winkler, E, 1999, DNA analyses support the hypothesis that infanticide is adaptive in langur monkeys, Proc. R. Soc. Lond., B 266: 901–904.

    CAS  Google Scholar 

  • Burpee, D. M., and Sakaluk, S. K., 1993, Repeated matings offset the costs of reproduction in female crickets, Evol. Ecol. 7: 240–250.

    Google Scholar 

  • Briskie, J. V., Montgomerie, R., Pöldmaa, T., and Boag, P. T., 1998, Paternity and paternal care in the polygynandrous Smith’s longspur, Behay. Ecol. Sociobiol. 43: 181–190.

    Google Scholar 

  • Brown, J. L., 1997, A theory of mate choice based on heterozygosity, Behay. Ecol. 8:60–65. Brown, W. D., 1997, Courtship feeding in tree crickets increases insemination and female reproductive lifespan, Anim. Behay. 54: 1369–1382.

    Google Scholar 

  • Carranza, J., 1996, Sexual selection for male body mass and the evolution of litter size in mammals, Am. Nat. 148: 81–100.

    Google Scholar 

  • Chao, L., 1997, Evolution of polyandry in a communal breeding system, Behay. Ecol. 8: 668–674.

    Google Scholar 

  • Cicirello, D. M., and Wolff, J. 0., 1990, The effects of mating on infanticide and pup discrimination in white-footed mice, Behay. Ecol. Sociobiol. 26: 275–279.

    Google Scholar 

  • Clutton-Brock, T. H., 1988, Reproductive Success, The University of Chicago Press, Chicago. Clutton-Brock, T. H., and Parker, G. A., 1995, Sexual coercion in animal societies, Anim. Behay. 49: 1345–1365.

    Google Scholar 

  • Colwell, M. A., and Oring, L. W., 1989, Extra-pair maing in the spotted sandpiper: a female mate aquisition tactic, Anim. Behay. 38: 675–684.

    Google Scholar 

  • Crow, J. E, 1979, Genes that violate Mendel’s laws, Sci. Am. 240: 134–146.

    PubMed  CAS  Google Scholar 

  • Crozier, R. H., and Consul, P. C., 1976, Conditions for genetic polymorphism in social Hymenoptera under selection at the colony level, Theor. Pop. Biol. 10: 1–9.

    CAS  Google Scholar 

  • Davies, N. B., 1985, Cooperation and conflict among dunnocks, Prunella modularis, in a variable mating system, Anim. Behay. 33: 628–648.

    Google Scholar 

  • Davies, N. B., Hartley, I. R., Hatchwell, B. J., and Langmore, N. E., 1996, Female control of copulations to maximize male help: a comparison of polygynandrous alpine accentors, Prunella collaris, and dunnocks, P. modularis, Anim. Behay. 51: 27–47.

    Google Scholar 

  • Dzuik, P. J., 1996, Factors that influence the proportion of offspring sired by a male following heterospermic insemination, Anim. Reprod. Sci. 43: 65–88.

    Google Scholar 

  • Eberhard, W. G., 1996, Female Control: Sexual Selection by Cryptic Female Choice, Princeton University Press, Princeton.

    Google Scholar 

  • Eisner, T., Eisner, M., Rossini, C., Iyengar, V. K., Roach, B. L., Benedikt, E., and Meinwald, J., 2000, Chemical defense against predation in an insect egg, Proc. Natl. Acad. Sci. USA 37: 1634–1639.

    Google Scholar 

  • Emlen, S. T., and Oring, L. W., 1977, Ecology, sexual selection and the evolution of mating systems, Science 197: 215–223.

    PubMed  CAS  Google Scholar 

  • Erickson, R. P., 1990, Post-meiotic gene expression, Trends Genet. 8: 264–269.

    Google Scholar 

  • Fairbain, D. J., 1993, Costs of loading associated with mate-carrying in the waterstrider, Aquarius remigis, Behay. Ecol. 4: 224–231.

    Google Scholar 

  • Festa-Bianchet, M., Gallard, J. M., and Jorgenson, J. T., 1998, Mass and density dependent reproductive success and reproductive costs in a capital breeder, Am. Nat. 152: 367–379.

    PubMed  CAS  Google Scholar 

  • Forbes, S. L., and Mock, D. W., 1998, Parental optimism and progeny choice: when is screening for offspring quality affordable?, J. Theor. Biol. 192: 3–14.

    PubMed  Google Scholar 

  • Fjerdingstad, E. J., and Boomsma, J. J., 1998, Multiple mating increases the sperm stores of Atta colombica leafcutter ant queens. Behay. Ecol. Sociobiol. 9: 257–261.

    Google Scholar 

  • Fox, C. W., 1993, Multiple mating, lifetime fecundity and female mortality of the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae), Funct. Ecol. 7: 203–208.

    Google Scholar 

  • Fuchs, S., and Moritz, R. F. A., 1998, Evolution of extreme polyandry in the honeybee Apis mellifera L., Behay. Ecol. Sociobiol. 9: 269–275.

    Google Scholar 

  • Gibson, R. M., and Jewell, P. A., 1982, Semen quality, female choice, and multiple mating in domestic sheep: a test of Triver’s sexual competence hypothesis, Behaviour 80: 9–31.

    Google Scholar 

  • Gonzales, A., Rossini, C., Eisner, M., and Eisner, T., 1999, Sexually transmitted chemical defense in a moth (Utetheisa ornatrix), Proc. Natl. Acad. Sci. USA 96: 5570–5574.

    Google Scholar 

  • Gwynne, D., 1984, Courtship feeding increases female reproductive success in bushcrickets, Nature 307: 361–363.

    Google Scholar 

  • Gwynne, D., 1997, The evolution of edible `sperm sacs’ and other forms of courtship feeding in crickets, katydids and their kin (Orthoptera: Ensifera) in: The Evolution of Mating Systems in Insects and Arachnids (J. C. Choe and B. J. Crespi, eds.), pp. 146–163, Cambridge University Press, Cambridge.

    Google Scholar 

  • Haig, D., and Bergstrom, C. T.,1995, Multiple mating, sperm competition and meiotic drive, J. Evol. Biol. 8: 265–282.

    Google Scholar 

  • Halliday, T., and Arnold, S. J., 1987, Multiple mating by females: a perspective from quantitative genetics. Anim, Behay. 35: 939–941.

    Google Scholar 

  • Holland, B., and Rice, W. R., 1998, Perspective: Chase-away sexual selection: antagonistic seduction versus resistance, Evolution 52: 1–7.

    Google Scholar 

  • Hosken, D. J., and Blanckenhorn, W. U., 1999, Female multiple mating, inbreeding avoidance and fitness: it’s not only the magnitude of costs and benefits that count, Behay. Ecol. 10: 462–464.

    Google Scholar 

  • Hosken, D. J., Blanckenhorn, W U., and Ward, P. I., 2000, Developmental stability in yellow dung flies (Scathophaga stercoraria): fluctuating asymmetry, heterozygosity and environmental stress, J. Evol. Biol. 13: 919–926.

    Google Scholar 

  • Hosken, D. J., Garner, T. W. J., and Ward, P. I., 2001, Sexual conflict selects for male and female characters, Current Biology 11: 489–493.

    PubMed  CAS  Google Scholar 

  • Hrdy, E.,1977, The Langurs of Abu,Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Jennions, M. D., and Petrie, M., 2000, Why do females mate multiply? A review of the genetic benefits, Biol. Rev. 75: 21–64.

    PubMed  CAS  Google Scholar 

  • Karlsson, B., 1998, Nuptial gifts, resource budgets, and reproductive output in a polyandrous butterfly, Ecology 79: 2931–2940.

    Google Scholar 

  • Keller, L., and Reeve, H. K., 1995, Why do females mate with multiple males? The sexually selected sperm hypothesis. Adv. Study Behay. 24: 291–315.

    Google Scholar 

  • Kempenaers, B., Congdon, B., Boag, P., and Robertson, R. J., 1999, Extrapair paternity and egg hatchability in tree swallows: evidence for the genetic compatability hypothesis?, Behay. Ecol. 10: 304–311.

    Google Scholar 

  • LaMunyon, C.,1997, Increased fecundity, as a function of multiple mating, in an arctüd moth, Utetheisa ornatatrix, Ecol. Entomol. 22: 69–73.

    Google Scholar 

  • Lauer, M. J., 1996, Effect of sperm depletion and starvation on female mating behavior in the water strider Aquarius remigis. Behay. Ecol. Sociobiol. 38: 89–96.

    Google Scholar 

  • Madsen, T., and Shine, R., 1998, Quantity or quality? Determinants of maternal reproductive success in tropical pythons (Liasis fuscus), Proc. R. Soc. Lond., B 265: 1521–1525.

    Google Scholar 

  • Madsen, T., Shine, R., Loman, J., and Hakansson, T., 1992, Why do female adders copulate so frequently?, Nature 355: 440–441.

    Google Scholar 

  • Markow, T. A., Gallagher, P. D., and Krebs, R. A., 1990, Ejaculate derived nutritional contribution and female reproductive success in Drosophila mojavensis, Funct. Ecol. 4: 67–73.

    Google Scholar 

  • Mock, D. W., and Parker, G. A., 1997, The Evolution of Sibling Rivalry, Oxford University Press, Oxford.

    Google Scholar 

  • Miller, A. E, 1988, Infanticidal and anti-infanticidal strategies in the barn swallow Hirundo rustica, Behay. Ecol. Sociobiol. 22: 365–371.

    Google Scholar 

  • Nakatsuru, K., and Kramer, D. L., 1982, Is sperm cheap? Limited fertility and female choice in the lemon tetra (Pisces, Characidae), Science 216: 753–755.

    PubMed  CAS  Google Scholar 

  • Nakamura, M., 1998, Multiple mating and cooperative breeding in polygyandrous alpine accentor. I. Competition among females, Anim. Behay. 55: 259–275.

    Google Scholar 

  • Olsson, M., Shine, R., Madsen, T., Gullberg, A., and Tegelstrom, H., 1996, Sperm selection by females, Nature 383: 585.

    CAS  Google Scholar 

  • Partridge, L., 1983, Non-random mating and offspring fitness, in: Mate Choice ( P. Bateson, ed.), pp. 227–255, Cambridge University Press, Cambridge.

    Google Scholar 

  • Parker, G. A., 1979, Sexual selection and sexual conflict, in: Sexual Selection and Reproductive Competition in Insects ( M. S. Blum and N. A. Blum, eds.), pp. 123–166, Academic Press, London.

    Google Scholar 

  • Penn, D. J., and Potts, W. K., 1999, The evolution of mating preferences and major histocompatibility complex genes, Am. Nat. 153: 145–164.

    Google Scholar 

  • Petrie, M., Doums, C., and Mg ller, A. P., 1998, The degree of extra-pair paternity increases with genetic diversity, Proc. Natl. Acad. Sci. USA 95: 9390–9395.

    PubMed  CAS  Google Scholar 

  • Pitnick, S., and Markow, T. A., 1994, Male gametic strategies: sperm size, testes size, and the allocation of ejaculate among successive mates by the sperm-limited fly Drosophila pachea and its relatives, Am. Nat. 143: 785–819.

    Google Scholar 

  • Pitnick, S., Markow, T. A., and Reidy, M. E, 1991, Transfer of ejaculates and incorporation of male derived substances by females of the Nannopteran species group (Diptera: Drosophila), Evolution 45: 774–780.

    Google Scholar 

  • Pitnick, S., Spicer, G. S., and Markow, T., 1997, Phylogenetic examination of female incorporation of ejaculate in Drosophila. Evolution 51: 833–845.

    Google Scholar 

  • Radwan, J., 1998, Heritability of sperm competition success in the bulb mite, Rhizoglyphus robini, J. Evol. Biol. 11: 321–327.

    Google Scholar 

  • Reyer, H.-U., Frei, G., and Som, C., 1999, Cryptic female choice: frogs reduce clutch size when amplexed by undesired males, Proc. R. Soc. Lond., B 266: 2101–2107.

    CAS  Google Scholar 

  • Ridley, M., 1988, Mating frequency and fecundity in insects, Biol. Rev. 63: 509–549.

    Google Scholar 

  • Roff, D. A. 1992, The Evolution of Life Histories: Theory and Analysis, Chapman & Hall, London.

    Google Scholar 

  • Rulicke, T., Chapuisat, M., Homberger, F. R., Macas, E., and Wedekind, C., 1998, MHC genotype of progeny influenced by parental infection, Proc. R. Soc. Lond., B 265: 711–716.

    CAS  Google Scholar 

  • Sax, A., Hoi, H., and Birkhead, T. R., 1998, Copulation rate and sperm use by female bearded tits, Panurus biarmicus, Anim. Behay. 56: 1199–1204.

    Google Scholar 

  • Sakaluk, S. K., 1997, Cryptic female choice predicated on wing dimorphism in decorated crickets, Behay. Ecol. 8: 326–331.

    Google Scholar 

  • Savalli, U. M., and Fox, C. W., 1999, The effects of male mating history on paternal investment, fecundity and female remating in the seed beetle Callosobruchus maculatus, Funct. Ecol. 13: 169–177.

    Google Scholar 

  • Schwartz, M. K., Boness, D. J., Schaeff, C. M., Majluf, P., Perry, E. A., and Fleischer, R. C.,1999, Female-solicited extrapair matings in Humboldt penguins fail to produce extrapair fertilizations, Behay. Ecol. 10: 242–250.

    Google Scholar 

  • Sgró, C. M., Chapman, T., and Partridge, L., 1998, Sex specific selection on time to remate in Drosophila melanogaster, Anim. Behay. 56: 1267–1278.

    Google Scholar 

  • Simmons, L. W., 1988, The contribution of multiple mating and spermatophore consumption to the lifetime reproductive success of female field crickets, Ecol. Entomol. 13: 57–69.

    Google Scholar 

  • Simmons, L. W., and Bailey, W. J., 1990, Resource influenced sex roles of zaprochiline tettigoniids (Orthoptera: Tettigonidae), Evolution 44: 1853–1868.

    Google Scholar 

  • Simmons, L. W., and Gwynne, D., 1993, Reproductive investment in bushcrickets: the allocation of male and female nutrients to offspring, Proc. R. Soc. Lond., B 252: 1–5.

    Google Scholar 

  • Stearns, S. C., 1987, The selection arena hypothesis, in: The Evolution of Sex and its Consequences ( S. C. Stearns, ed.), pp. 337–379, Birkhäuser Verlag, Basel.

    Google Scholar 

  • Stearns, S. C., 1992, The Evolution of Life Histories, Oxford University Press, Oxford. Stockley, P, 1997a, No evidence for sperm selection by female common shrews, Proc. R. Soc. Lond., B 264: 1497–1500.

    Google Scholar 

  • Stockley, E, 1997b, Sexual conflict resulting from adaptations to sperm competition. Trends Ecol. Evol. 12: 154–159.

    PubMed  CAS  Google Scholar 

  • Stockley, P., 1999. Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition?, Proc. R. Soc. Lond., B 266: 1663–1669.

    Google Scholar 

  • Stockley, E, and Macdonald, D. W., 1998, Why do female common shrews produce so many offspring?, Oikos 83: 560–566.

    Google Scholar 

  • Stockley, E, Searle, J. B., Macdonald, D. W., and Jones, C. S., 1993, Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding., Proc. R. Soc. Lond., B 254: 173–179.

    CAS  Google Scholar 

  • Thornhill, R., 1976, Sexual selection and nuptial feeding behavior in Bittacus apicalis (Insecta: Mecoptera). Am. Nat. 110: 529–548.

    Google Scholar 

  • Thornhill, R., 1978, Sexually selected predatory and mating behavior of the hanging fly, Bittacus stigmaterus (Mecoptera: Bittacidae). Annals Entomol. Soc. Am. 71: 597–601.

    Google Scholar 

  • Tregenza, T., and Wedell, N., 1998, Benefits of multiple mating in the cricket Gryllus bimaculotus, Evolution 52: 1726–1730.

    Google Scholar 

  • Tregenza, T., and Wedell, N., 2000, Genetic compatability, mate choice and patterns of parentage, Mol. Ecol. 9: 1013–1027.

    CAS  Google Scholar 

  • Viera, C.. Pasyukova, E. G., Zeng, Z.-B., Hackett, J. B., Lyman, R. E, and Mackay, T. E C., 2000, Genotype-environment interactions for quantitative trait loci affecting life span in Drosophila melanogaster, Genetics 154: 213–227.

    Google Scholar 

  • V011estad, L. A., Hindar, K., and Moller, A. P, 1999, A meta-analysis of fluctuating asymmetry in relation to heterozygosity, Heredity 83: 206–218.

    Google Scholar 

  • Wade, M. J., and Chang, N. W., 1995, Increased male fertility in Tribolium confusum beetles after infection with the intra-cellular parasite Wolbachia, Nature 373: 72–74.

    PubMed  CAS  Google Scholar 

  • Wagner, R. H., 1991, The use of extrapair copulation for mate appraisal by razor bills, Alca torda, Behay. Ecol. 2: 198–203.

    Google Scholar 

  • Ward, P. I., 2000, Cryptic female choice in the yellow dung fly Scathophaga stercoraria (L.), Evolution 54: 1680–1686.

    PubMed  CAS  Google Scholar 

  • Warner, R. R., Shapiro, D. Y., Marcanato, A., and Petersen, C. W., 1995, Sexual conflict: males with highest mating success convey the lowest fertilisation benefits to females, Proc. R. Soc. Lond., B 262: 135–139.

    CAS  Google Scholar 

  • Weatherhead, P. J., Dufour, K. W, Lougheed, S. C., and Eckert, C. G., 1999, A test of the good- genes-as-heterozygosity hypothesis using red-winged blackbirds, Behay. Ecol. 10: 619–625.

    Google Scholar 

  • Wedell, N., 1996, Mate quality affects reproductive effort in a paternally investing species, Am. Nat. 148: 1075–1088.

    Google Scholar 

  • Wedekind, C., Chapsuit, M., Macas, E., and Rulicke, T., 1996, Non-random fertilization in mice correlates with MHC and something else, Heredity 77: 400–409.

    PubMed  Google Scholar 

  • Wildt, D. E., Bush, M., Goodrowe, K. L.. Packer, C., Pusey, A. E., Brown, J. L., Joslin, E, and O’Brien, S. J., 1987, Reproductive and genetic consequences of founding isolated lion populations, Nature 329: 328–331.

    Google Scholar 

  • Wiley, R. H., and Poston, J., 1996, Indirect mate choice, competition for mates and the coevolution of the sexes, Evolution 50: 1371–1381.

    Google Scholar 

  • Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • Wilkinson, G. S., Presgraves, D. C., and Crymes, L.,1998, Male eye span in stalk-eyed flies indicates quality by meotic drive suppression, Nature 391: 276–279.

    Google Scholar 

  • Wilson, N., Tubman, S., Eady, P, and Robertson, G. W., 1997, Female genotype affects male success in sperm competition, Proc. R. Soc. Lond., B 264: 1491–1495.

    Google Scholar 

  • Yasui, Y., 1998, The ‘genetic benefits’ of female multiple mating reconsidered, Trends Ecol. Evol. 13: 246–250.

    CAS  Google Scholar 

  • Zeh, J. A., 1997, Polyandry and enhanced reproductive success in the harlequin-beetle-riding psuedoscorpion, Behay. Ecol. Sociobiol. 40: 111–118.

    Google Scholar 

  • Zeh, J. A., Newcomer, S. D., and Zeh, D. W., 1998, Polyandrous females discriminate against previous mates, Proc. Natl. Acad. Sci. USA 95: 13732–13736.

    PubMed  CAS  Google Scholar 

  • Zeh, J. A., and Zeh, D.W., 1996, The evolution of polyandry. I. Intragenomic conflict and genetic incompatibility. Proc. R. Soc. Lond., B 263: 1711–1717.

    Google Scholar 

  • Zeh, J. A., and Zeh, D. W., 1997, The evolution of polyandry. II. Post-copulatory defence against genetic incompatibility. Proc. R. Soc. Lond., B 264: 69–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hosken, D.J., Stockley, P. (2003). Benefits of Polyandry: A Life History Perspective. In: Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5190-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5190-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3385-0

  • Online ISBN: 978-1-4757-5190-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics