Between Coastal Marshes and Coastal Waters — A Review of Twenty Years of Speculation and Research on the Role of Salt Marshes in Estuarine Productivity and Water Chemistry

  • Scott W. Nixon
Part of the Marine Science book series (MR, volume 11)


It has been almost 20 years since John Teal (1962) published his well-known paper synthesizing a variety of independent studies of production, respiration, and animal abundances in the salt marsh ecosystem of Sapelo Island, Georgia. Teal’s work brought out a number of interesting points, but I think the reason the paper is most often cited is because of its last sentence. After discussing various trophic relationships in the marsh, the paper ended with the conclusion that “...the tides remove 45% of the production before the marsh consumers have a chance to use it and in so doing permit the estuaries to support an abundance of animals.”


Salt Marsh Particulate Organic Carbon Tidal Cycle Accretion Rate Tidal Marsh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, Robert C. 1977. The influence of macrobenthos on chemical diagenesis of marine sediments. Ph.D. Thesis, Yale University, New Haven, CT, 600 p.Google Scholar
  2. Armentano, T. V. and G. M. Woodwell. 1975. Sedimentation rates in a Long Island marsh determined by Pb-210 dating. Limnol. Oceanogr. 20:452–456.CrossRefGoogle Scholar
  3. Aurand, D. and F. C. Daiber. 1973. Nitrate and nitrite in the surface waters of two Delaware salt marshes. Chesapeake Science 14:105–111.CrossRefGoogle Scholar
  4. Axelrad, D. M. 1974. Nutrient flux through the salt marsh ecosystem. Ph.D. Thesis, College of William and Mary, 134 p.Google Scholar
  5. Banus, Mario, I. Valiela and J. M. Teal. 1974. Export of lead from salt marshes. Marine Pollution Bull. 5:6–9.CrossRefGoogle Scholar
  6. Banus, Mario, Ivan Valiela and John M. Teal. 1975. Lead, zinc, and cadmium budgets in experimentally enriched salt marsh ecosystems. Estuarine and Coastal Marine Science 3:421–430.CrossRefGoogle Scholar
  7. Bender, M. E. and D. L. Correli. 1974. The use of wetlands as nutrient removal systems. National Technical Information Service, U. S. Dept. of Commerce, 12 p.Google Scholar
  8. Bender, Michael and G. Ross Heath. 1975. Marine phosphorus geochemistry. NSF Proposal, Grad. School of Oceanography, U.R.I., Kingston, RI.Google Scholar
  9. Biggs, R. B. and D. A. Flemer. 1972. The flux of particulate carbon in an estuary. Marine Biology 12:11–17.Google Scholar
  10. Blanton, J. O. and L. P. Atkinson. 1978. Physical transfer processes between Georgia tidal inlets and nearshore waters, pp. 515–532. In: Martin L. Wiley (ed.), Estuarine Interactions. Academic Press, N. Y.Google Scholar
  11. Bloom, A. L. 1967. Coastal geomorphology of Connecticut. Final Report, O.N.R. Contract, Nonr-401(45), Task No. 388-U65, 72 p.Google Scholar
  12. Boon, John, III. 1975. Tidal discharge asymmetry in a salt marsh drainage system. Limnol. Oceanogr. 20:71–80.CrossRefGoogle Scholar
  13. Boon, John, III. 1978. Suspended solids transport in a salt marsh creek — an analysis of errors, pp. 147–159. In: Bjorn Kjerfve (ed.), Estuarine Transport Processes. University of South Carolina Press, Columbia, SC.Google Scholar
  14. Boynton, W. R. 1974. Phytoplankton production in Chinocoteague Bay, MD. M. S. Thesis, University of North Carolina, 142 p.Google Scholar
  15. Brinson, Mark M. and Graham J. Davis. 1976. Primary productivity and mineral cycling in aquatic macrophyte communities of the Chowan River, North Carolina. Water Resources Research Institute, University of North Carolina, Report No. 120, 137 p.Google Scholar
  16. Bronowski, J. 1956. Science and Human Values. Harper & Row, 119 p.Google Scholar
  17. Broome, J. W., W. W. Woodhouse and E. D. Seneca. 1975. The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina. II. The effects of N, P, and Fe fertilizers. Soil Sci. Soc. Am. Proc. 39:301–307.CrossRefGoogle Scholar
  18. Carpenter, Edward J., Charlene D. VanRaalte and Ivan Valiela. 1978. Nitrogen fixation by algae in a Massachusetts salt marsh. Limnol. Oceanogr. 23:318–327.CrossRefGoogle Scholar
  19. Casselman, Maria Eugenie. 1979. Biological nitrogen fixation in a Louisiana Spartina alterniflora salt marsh. M. S. Thesis, Louisiana State University, 82 pp.Google Scholar
  20. Chrzanowski, Thomas H., L. Harold Stevenson and Bjorn Kjerfve. 1979. Adenosine 5’-Triphosphate flux through the North Inlet Marsh system. Applied and Environmental Microbiology 37(5): 841–848.PubMedGoogle Scholar
  21. Cruz, A. A. de la. 1965. A study of particulate organic detritus in a Georgia salt marsh estuarine ecosystem. Ph.D. Dissertation. University of Georgia, Athens, GA, 141 pp.Google Scholar
  22. Cruz, A. A. de la. 1973. The role of tidal marshes in the productivity of coastal waters. Assoc. Southeastern Biologists Bull. 20(4); 147–156.Google Scholar
  23. DeLaune, R. D., W. H. Patrick, Jr., J. M. Brannon. 1976. Nutrient transformations in Louisiana salt marsh soils. Sea Grant Publication #LSU-T-76–009, Louisiana State University, Baton Rouge, LA, 38 p.Google Scholar
  24. DeLaune, R. D., W. H. Patrick, Jr., R. J. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275:532–533.CrossRefGoogle Scholar
  25. DeLaune, R. D., R. J. Buresh and W. H. Patrick, Jr. 1979. Relationship of soil properties to standing crop biomass of Spartina alterniflora in a Louisiana marsh. Est. and Coastal Mar. Sci. 8:477–487.CrossRefGoogle Scholar
  26. DeLaune, R. D. and W. H. Patrick, Jr. In press. Nitrogen and phosphorus cycling in a Gulf Coast salt marsh. Proc. Int. Estuarine Research Federation Conf., Jeckyll Island, GA, 1979.Google Scholar
  27. Dunstan, W. M., H. L. Windom and G. L. Mclntire. 1975. The role °f Spartina alterniflora in the flow of Lead, Cadmium, and Copper through the salt-marsh ecosystem, pp. 250–256. In: Fred G. Howell, John B. Gentry and Michael H. Smith (eds.), Mineral Cycling in Southeastern Ecosystems.Google Scholar
  28. Eastman, Kurt W. 1980. The mixing behavior of iron, manganese, phosphorus, and humic acid in a salt marsh creek. M. S. Thesis, College of Marine Studies, Univ. of Delaware.Google Scholar
  29. Erkenbrecher, Carl W., Jr., and L. Harold Stevenson. 1978. The transport of microbial biomass and suspended material in a high-marsh creek. Can. Journal Microbiology 24:839–846.CrossRefGoogle Scholar
  30. Fitzgerald, W. F. 1978. Sedimentary geochemical and geological studies: Branford Harbor, CT. Submitted to Waterways Experiment Station, U. S. Army Corps of Engineers, Contract //DACW33–75-C-0085.Google Scholar
  31. Flemer, David A. 1970. Primary production in the Chesapeake Bay. Chesapeake Science 11(2):117–129.CrossRefGoogle Scholar
  32. Folger, David W. 1972. Texture and organic carbon content of bottom sediments in some estuaries of the United States, pp. 391–408. In: Bruce W. Nelson (ed.), Environmental Framework of Coastal Plain Estuaries, The Geological Society of America, Inc., Memoir 133.Google Scholar
  33. Frey, Robert W. and Paul B. Basan. 1978. Coastal salt marshes, pp. 101–169. In: Richard A. Davis, Jr. (ed.), Coastal Sedimentary Environments. Springer-Verlag, New York.CrossRefGoogle Scholar
  34. Froelich, P. N., M. L. Bender and G. R. Heath. 1977. Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise. Earth and Planetary Science Letters 34:351–359.CrossRefGoogle Scholar
  35. Gallagher, John L., William J. Pfeiffer and Lawrence R. Pomeroy. 1976. Leaching and microbial utilization of dissolved organic carbon from leaves of Spartina alterniflora. Estuarine and Coastal Marine Science 4:467–471.CrossRefGoogle Scholar
  36. Gardner, Leonard R. and Wiley Kitchens. 1978. Sediment and chemical exchanges between salt marshes and coastal waters, pp. 191–207. In: B. J. Kjerfve (ed.), Estuarine Transport Processes. University of South Carolina Press, Columbia, SC.Google Scholar
  37. Gardner, Leonard R. 1975. Runoff from an intertidal marsh during tidal exposure-recession curves and chemical characteristics. Limnol. Oceanogr. 20:81–89.CrossRefGoogle Scholar
  38. Gosselink, James G., Eugene P. Odum, R. M. Pope. 1974. The value of the tidal marsh. Center for Wetland Resources, Louisiana State University, Baton Rouge, LA, 30 p.Google Scholar
  39. Graham, William F. and Robert A. Duce. 1979. Atmospheric pathways of the phosphorus cycle. Geochimica et Cosmochimica Acta 43: 1195–1208.CrossRefGoogle Scholar
  40. Haines, Evelyn B. 1975. Nutrient inputs to the coastal zone: the Georgia and South Carolina shelf, pp. 303–322. In: L. E. Cronin (ed.), Estuarine Research, Vol. 1, Academic Press, N. Y., 738 p.Google Scholar
  41. Haines, E. B. and W. M. Dunstan. 1975. The distribution and relation of particulate organic material and primary productivity in the Georgia Bight, 1973–1974. Estuarine and Coastal Marine Science 3:431–441.CrossRefGoogle Scholar
  42. Haines, Evelyn B. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia Salt Marsh. Est. Coastal Mar. Sci. 4:609–616.Google Scholar
  43. Haines, Evelyn B. 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnol. Oceanogr. 21:880–883.Google Scholar
  44. Haines, E. B., A. Chalmers, R. Hanson and B. Sherr. 1977. Nitrogen pools and fluxes on a Georgia salt marsh, pp. 241–254. In: M. Wiley (ed.), Estuarine Processes, Vol. 2, Academic Press, N. Y.Google Scholar
  45. Haines, E. B. 1977. The origins of detritus in Georgia salt marsh estuaries. Oikos 29:254–260.CrossRefGoogle Scholar
  46. Haines, Evelyn B. l978a. Interactions between Georgia Salt marshes and coastal waters: a changing paradigm, pp. 35–46. In: R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems, 1979. Proceedings of the Symposium at Florida State University, April, 1978. Plenum Press.Google Scholar
  47. Haines, Evelyn B. 1979b. Nitrogen pools in Georgia coastal waters. Estuaries 2:34–39.CrossRefGoogle Scholar
  48. Haines, Evelyn B. and Clay L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60:000–000.CrossRefGoogle Scholar
  49. Hall, C. A. S., D. Whitney, G. M. Woodwell, D. W. Juers and R. Moll. 1975. Material exchanges between the Flax Pond marsh system and Long Island Sound. Paper presented at the Third Biennial International Estuarine Research Conference, Galveston, TX.Google Scholar
  50. Halvorson, William L. and William E. Gardiner. 1976. Atlas of Rhode Island salt marshes. Univ. of Rhode Island Marine Memorandum No. 44.Google Scholar
  51. Hanson, Roger B. 1977. Nitrogen fixation (acetylene reduction) in a salt marsh amended with sewage sludge and organic carbon and nitrogen compounds. Applied and Environmental Microbiology 33:846–852.PubMedGoogle Scholar
  52. Hanson, Roger B. 1977. Comparison of nitrogen fixation activity in tall and short Spartina alterniflora salt marsh soils. Applied and Environmental Microbiology 33:596–602.PubMedGoogle Scholar
  53. Happ, Georgeann, James G. Gosselink and John W. Day, Jr. 1977. The seasonal distribution of organic carbon in a Louisiana estuary. Estuarine Coastal Marine Science 5:695–705.CrossRefGoogle Scholar
  54. Harrison, E. Z. and A. L. Bloom. 1974. The response of Connecticut salt marshes to the recent rise in sea level. Geol. Soc. Amer. Abstracts with Programs 6:35–36.Google Scholar
  55. Hayes, Miles O. 1978. Impact of hurricanes on sedimentation in estuaries, bays, and lagoons, pp. 323–346. In: Martin L. Wiley (ed.), Estuarine Interactions. Academic Press, N. Y.Google Scholar
  56. Heinle, D. R. and D. A. Flemer. 1976. Flows of materials between poorly flooded tidal marshes and an estuary. Mar. Biol. 35: 359–373.CrossRefGoogle Scholar
  57. Heinle, D. 1979. Characteristics of Chesapeake Bay. Presentation and mimeo handout of the Int. Symp. on Nutrient Enrichment in Estuaries. Williamsburg, VA.Google Scholar
  58. Hicks, Steacy D. 1973. Trends and variability of yearly mean sea level 1893–1971. U. S. Dept, of Commerce, National Oceanic and Atmospheric Administration National Ocean Survey, NOAA Tech. Mem. NOS 12, Rockville, MD, pp. 13.Google Scholar
  59. Hopkinson, Charles S., John M. Day, Jr., and B. T. Gael. 1978. Respiration studies in a Louisiana salt marsh. An. Centro Cienc. Del Mar. Y. Limnol., Univ. Nal. Auton, Mexico 5(1): 225–238.Google Scholar
  60. Houghton, R. A. and G. M. Woodwell. In press. The Flax Pond ecosystem study: Exchanges of CO2 between a salt marsh and the atmosphere. Ecology.Google Scholar
  61. Jaworski, Norbert A. In press. Sources of nutrients and the scale of eutrophication problems in estuaries. International Symposium on the Effects of Nutrient Enrichment in Estuaries. Williamsburg, VA, 29–31 May 1979, Humana Press.Google Scholar
  62. Jones, Keith. 1974. Nitrogen fixation in a salt marsh. J. of Ecology 62:553–565.CrossRefGoogle Scholar
  63. Kalber, Frederick A., Jr. 1959. A hypothesis on the role of tide-marshes in estuarine productivity. Estuarine Bulletin 4(1):3.Google Scholar
  64. Kaplan, Warren, Ivan Valiela and John M. Teal. 1979. Denitrifica-tion in a salt marsh ecosystem. Limnol. Oceanogr. 24(4): 726–734.CrossRefGoogle Scholar
  65. Keefe, C. W. 1972. Marsh production: a summary of the literature. Contrib. Mar. Sci., Univ. of Texas 16:163–181.Google Scholar
  66. Kjerfve, Bjorn, Jeffrey E. Greer and Richard L. Crout. 1978. Low-frequency response of estuarine sea level to non-local forcing, pp. 497–513. In: Martin L. Wilsy (ed.), Estuarine Interactions. Academic Press, N. Y.Google Scholar
  67. Kjerfve, Bjorn and Jeffrey A. Proehl. 1979. Velocity variability in a cross-section of a well-mixed estuary. J. of Marine Research 37:409–418.Google Scholar
  68. Lee, Virginia. 1979. Net nitrogen flux between the emergent marsh and tidal waters. M. S. Thesis, University of Rhode Island, 67 pp.Google Scholar
  69. Lord, C. J., III. 1980. The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph.D. Dissertation, Univ. of Delaware, 177 pp.Google Scholar
  70. Lotrich, Victor A., William H. Meredith, Stephen B. Weisberg, L. E. Hurd and Franklin C. Daiber. 1979. Dissolved and particulate nutrient fluxes via tidal exchange between a salt marsh and lower Delaware Bay. The Fifth Biennial International Estuarine Research Conference Abstracts, Jekyll Island, GA, Oct. 7–12, 1979.Google Scholar
  71. Lyons, Barry. 1979. Early diagenesis of trace metals in nearshore Long Island Sound sediments. Ph.D. Thesis, Univ. of Connecticut.Google Scholar
  72. Marsho, T. V., R. P. Burchard and R. Fleming. 1975. Nitrogen fixation in the Rhode River Estuary, Chesapeake Bay. Can. J. Microbiol. 21:1348–1356.PubMedCrossRefGoogle Scholar
  73. McCaffrey, Richard J. 1977. A record of the accumulation of sediment and trace metals in a Connecticut, U. S. A., salt marsh. Ph.D. Dissertation, Yale University, New Haven, CT, 156 p.Google Scholar
  74. McHugh, J. L. 1967. Estuarine Nekton, pp. 581–620. In: George H. Lauff (ed.), Estuaries, Amer. Association for the Advancement of Science, Washington DC.Google Scholar
  75. Moll, R. A. 1977. Phytoplankton in a temperate-zone salt marsh: net production and exchanges with coastal waters. Marine Biology 42:109–118.CrossRefGoogle Scholar
  76. Moore, Kenneth A. 1974. Carbon transport in two York River, Virginia marshes. M. S. Thesis, Univ. of Virginia, pp. 102.Google Scholar
  77. Muller, P. J. 1977. C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta 41:765–776.CrossRefGoogle Scholar
  78. Mulholland, Patrick J., and Edward J. Kuenzler. 1979. Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24:960–965.CrossRefGoogle Scholar
  79. National Resources Defense Council. 1978. Safeguarding wetlands and Watersources with 404. General distribution mimeo pamphlet.Google Scholar
  80. Nixon, Scott W. and Candace A. Oviatt. 1973. Ecology of a New England salt marsh. Ecological Monographs 43(4):463–498.CrossRefGoogle Scholar
  81. Nixon, S. W., C. A. Oviatt, J. Garber, V. Lee. 1976. Diel metabolism and nutrient dynamics in a salt marsh embayment. Ecology 57(4):740–750.CrossRefGoogle Scholar
  82. Nixon, S. W. and William E. Odum. 1976. Interactions between tidal wetlands and coastal waters, pp. 217–218. In: Martin Wiley (ed.), Estuarine Processes, Vol. II, Circulation, Sediments, and Transfer of Material in the Estuary. Academic Press, N. Y.Google Scholar
  83. Nixon, S. W., J. R. Kelly, B. N. Furnas and C. A. Oviatt. In press. Phosphorus regeneration and the metabolism of coastal marine bottom communities, pp. 000–000. In: K. R. Tenore and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. of SC Press, Columbia, SC.Google Scholar
  84. Nixon, S. W. and V. Lee. In press. The flux of carbon, nitrogen and phosphorus between coastal lagoons and offshore waters. In: P. Lassier (ed.), Coastal Lagoons: Present and Future Research, Part II UNESCO Tech. Pub. in Mar. Sci., Paris.Google Scholar
  85. Nixon, S.W. In press. Remineralization and nutrient cycling in coastal marine ecosystems. International Symposium on Nutrient Enrichment in Estuaries, Williamsburg, VA, 1979, Humana Press.Google Scholar
  86. O’Connor, S. G. and A. J. McErlean. 1975. The effects of power plants on productivity of the nekton, pp. 494–517. In: L. E. Cronin (ed.), Estuarine Research, Vol. 1, Academic Press, N. Y., pp. 738.Google Scholar
  87. Odum, Eugene. 1961. The role of tidal marshes. New York Conservationist, June-July, p. 12.Google Scholar
  88. Odum, Eugene P. and Armando A. de la Cruz. 1967. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem, pp. 383–388. In: George H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Publication No. 83.Google Scholar
  89. Odum, Eugene P. 1968. A research challenge: evaluating the productivity of coastal and estuarine water, pp. 63–64. In: Proceedings of the Second Sea Grant Conference. Univ. of Rhode Island, October 1968.Google Scholar
  90. Odum, Eugene P. 1971. Fundamentals of Ecology. W. B. Saunders Co., Philadelphia, PA, 574 p.Google Scholar
  91. Odum, Eugene P. 1979. The status of three ecosystem-level hypo theses regarding salt marsh estuaries: tidal subsidy, out-welling and detritus-based food chains. The Fifth Biennial International Estuarine Research Conference Abstracts, Jekyll Island, GA, Oct. 7–12, 1979.Google Scholar
  92. Okuda, T. 1960. Metabolic circulation of phosphorus and nitrogen in Matsushima Bay (Japan) with special reference to exchange of these elements between overlying water and sediments. Trabalhos Inst. Biol. Marit Oceanogr. 2:7–153.Google Scholar
  93. Olsen, S. and Saul B. Saila. 1976. Fishing and petroleum on Georges Bank. New England Regional Commission Tech. Report 76–3, 22 p.Google Scholar
  94. Olsen, Stephen B. and David K. Stevenson. 1975. Commercial marine fish and fisheries of Rhode Island. Univ. of Rhode Island Marine Technical Report 34, 117 p.Google Scholar
  95. Parker, P. L. 1967. Chemical parameters, pp. 317–321. In: Pollution and Marine Ecology, Theodore A. Olson and Frederick J. Burgess (eds.), Interscience Publishers, N. Y.Google Scholar
  96. Patriquin, D. G. and D. Denike. 1978. In situ acetylene reduction assays of nitrogenase activity associated with the emergent halophyte Spartina alterniflora Loisel.: methodological problems. Aquatic Botany 4:211–226.CrossRefGoogle Scholar
  97. Pellenbarg, Robert E. and Thomas M. Church. 1979. The estuarine surface microlayer and trace metal cycling in a salt marsh. Science 203:1010–1012.PubMedCrossRefGoogle Scholar
  98. Pickral, James C. and William E. Odum. 1976. Benthic detritus in saltmarsh tidal creek, pp. 280–292. In: Martin Wiley (ed.), Estuarine Processes, Vol. II, Academic Press, N. Y.Google Scholar
  99. Pomeroy, L. R., R. E. Johannes, E. P. Odum and B. Roffman. 1967. The phosphorus and zinc cycles and productivity of a salt marsh, pp. 412–430. In: Symposium on Radioecology, Daniel J. Nelson and Francis C. Evans (eds.). Proceedings of the Second National Symposium held at Ann Arbor, MI, May 15–17, 1967.Google Scholar
  100. Pomeroy, Lawrence R., E. E. Smith and Carol M. Grant. 1965. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 10(2):167–172.CrossRefGoogle Scholar
  101. Pope, R. M. and James G. Gosselink. 1973. A tool for use in making land management decisions involving tidal marshland. Coastal Zone Management Journal 1(1):65–74.CrossRefGoogle Scholar
  102. Redfield, A. C. 1972. Development of a New England salt marsh. Ecol. Monogr. 42:201–237.CrossRefGoogle Scholar
  103. Reimold, Robert J. and Franklin C. Daiber. 1970. Dissolved phosphorus concentrations in a natural salt-marsh of Delaware. Hydrobiologia 36(3–4):361–371.CrossRefGoogle Scholar
  104. Reimold, Robert J. 1972. The movement of phosphorus through the salt marsh cord grass, Spartina alterniflora Loisel. Limnol. Oceanogr. 17(4):606–611.CrossRefGoogle Scholar
  105. Rice, Donald L. 1979. Trace element chemistry of aging marine detritus derived from coastal macrophytes. Ph.D. Thesis, Georgia Institute of Technology, 144 p.Google Scholar
  106. Richard, Glenn A. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh. Estuaries 1(1): 29–35.CrossRefGoogle Scholar
  107. Saila, Saul B. 1975. Some aspects of fish production and cropping in estuarine systems, pp. 473–493. In: L. E. Cronin (ed.), Estuarine Research, Vol. 1, Academic Press, N. Y., pp. 738.Google Scholar
  108. Salt Marsh Conference, Marine Institute, Sapelo Island, GA, 1958, Proceedings, pp. 133.Google Scholar
  109. Schubel, J. R. and Harry H. Carter. 1976. Suspended sediment budget for Chesapeake Bay, pp. 48–62. In: Martin Wiley (ed.), Estuarine Processes, Vol. II, Circulation, Sediments and Transfer of Material in the Estuary. Academic Press, N. Y.Google Scholar
  110. Settlemyre, J. L. and L. R. Gardner. 1975a. Chemical and sediment budgets for a small tidal creek, Charlestown Harbor, S. C. Water Resources Research Institute Report No. 57, Clemson University, Clemson, SC.Google Scholar
  111. Settlemyre, J. L. and L. R. Gardner. 1975b. A field study of chemical budgets for a small tidal creek-Charlestown Harbor, S. C. In: Marine Chemistry in the Coastal Environment, pp. 152–175. T. M. Church (ed.), ACS Symposium Series, No. 18.CrossRefGoogle Scholar
  112. Shaler, N. S. 1885. Sea-coast swamps of the Eastern United States. In: U. S. Geol. Survey 6th Annual Report, pp. 359–368.Google Scholar
  113. Sheith, M-S., J. 1974. Nutrients in Narragansett Bay sediments. M. S. Thesis, Univ. of Rhode Island, Kingston, RI.Google Scholar
  114. Siccama, Thomas G. and Elliot Porter. 1972. Lead in a Connecticut salt marsh. BioScience 22(4):232–234.CrossRefGoogle Scholar
  115. Simpson, Robert L., Dennis F. Whigham and Raymond Walker. 1978. Seasonal patterns of nutrient movement in a freshwater tidal marsh, pp. 243–257. In: Ralph E. Good, Dennis F. Whigham and Robert L. Simpson (eds.), Freshwater Wetlands: Ecological Processes and Management Potential, Academic Press, N. Y.Google Scholar
  116. Smayda, T. J. 1973. A survey of phytoplankton dynamics in the coastal waters from Cape Hatteras to Nantucket, pp. 3–1 to 3–100. In: Saul B. Saila (ed.), Coastal and Offshore Environmental Inventory: Cape Hatteras to Nantucket Shoals, Marine Publication Series No. 2, University of Rhode Island, Kingston, RI, 02881Google Scholar
  117. Smith, David W. 1979. Marsh nitrogen fixation: fact or fantasy. The Fifth Biennial International Estuarine Research Conference Abstracts, Jekyll Island, GA, Oct. 7–12, 1979.Google Scholar
  118. Spinner, George P. 1969. A plan for the marine resources of the Atlantic coastal zone. American Geographical Society, pp. 80.Google Scholar
  119. Stearns, L. A. and D. MacCreay. 1957. The case of the vanishing brick dust. Mosquito News 17:303–304.Google Scholar
  120. Stevenson, F. J. and C.-N. Cheng. 1971. Organic geochemistry of the Argentine Basin sediments: carbon-nitrogen relationships and Quaternary correlations. Geochimica et Cosmochimica Acta 36:653–671.CrossRefGoogle Scholar
  121. Strom, Richard N. and Robert B. Biggs. 1972. Trace metals in cores from the Great Marsh, Lewes, Delaware. Sea Grant Publication //DEL-SG-12–72, Univ. of Delaware, 35 p.Google Scholar
  122. Stross, Raymond G. and John R. Stottlemyer. 1965. Primary production in the Patuxent River. Chesapeake Sci. 6:125–140.CrossRefGoogle Scholar
  123. Taft, J. L. and W. R. Taylor. 1976. Phosphorus dynamics in some coastal plain estuaries. In: Estuarine Processes, Vol. 1, pp. 79–89, M. Wiley (ed.), Academic Press, N. Y.Google Scholar
  124. Teal, John M. 1958. Energy flow in the salt marsh ecosystem, pp. 101–107. In: Proceedings — Salt Marsh Conference, Marine Institute, Sapelo Island, GA, March 25–28.Google Scholar
  125. Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624.CrossRefGoogle Scholar
  126. Teal, J. M. and J. Kanwisher. 1961. Gas exchange in a Georgia salt marsh. Limnol. Oceanogr. 6(4):388–399.CrossRefGoogle Scholar
  127. Teal, J. M., I. Valiela and D. Berlo. 1979. Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnol. Oceanogr. 24:126–132.CrossRefGoogle Scholar
  128. Thayer, G. W. 1971. Phytoplankton production and the distribution of nutrients in a shallow unstratified estuarine system near Beaufort, N. C. Chesapeake Sci. 12:240–253.CrossRefGoogle Scholar
  129. Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: a review. Contributions in Marine Science 20:47–68.Google Scholar
  130. Turner, R. E. 1978a. Community plankton respiration in a salt marsh estuary and the importance of macrophytic leachates. Limnol. Oceanogr. 23:442–451.CrossRefGoogle Scholar
  131. Turner, R. E. 1978b. Louisiana’s coastal fisheries and changing environmental conditions, pp. 363–370. In: J. W. Day, D. D. Culley Jr., R. E. Turner and A. J. Mumphrey, Jr., (eds.), Proc. Third Coastal Marsh and Estuary Management Symposium. Louisiana State University, Division of Continuing Education, Baton Rouge, LA, 1979.Google Scholar
  132. Turner, R. E., S. W. Woo and H. R. Jitts. 1979. Phytoplankton production in a turbid, temperate salt marsh estuary. Estuarine and Coastal Marine Science, in press.Google Scholar
  133. Turner, R. E., S. W. Wood, and H. R. Hitts. 1979. Estuarine influences on a Continental Shelf plankton community. Science 206:218–220.PubMedCrossRefGoogle Scholar
  134. Tyndall, John. 1874. The forms of water in clouds and rivers, ice and glaciers. D. Appleton & Co., N. Y. 4th ed., pp. 196.Google Scholar
  135. Udell, H. F., J. Zarudsky, T. E. Doheny. 1969. Productivity and nutrient values of plants growing in the salt marshes of the Town of Hempstead, Long Island. Bulletin of the Torrey Botanical Club 96:42–51.CrossRefGoogle Scholar
  136. United States Department of the Interior, Fish and Wildlife Service. 1970. National Estuary Study, Vols. 2 & 3.Google Scholar
  137. Upchurch, Joseph B. 1972. Sedimentary phosphorus in the Pamlico Estuary of North Carolina. Sea Grant Publication UNC-SG-72–03, Univ. of North Carolina, 39 p.Google Scholar
  138. Valiela, Ivan, John M. Teal and Norma Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: below ground biomass. Limnol. Oceanogr. 21:245–252.CrossRefGoogle Scholar
  139. Valiela, Ivan, John M. Teal, Suzanne Volkman, Deborah Shafer and Edward J. Carpenter. 1978. Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and groundwater. Limnol. Oceanogr. 23(4): 798–812.CrossRefGoogle Scholar
  140. VanRaalte, Charlene D., Ivan Valiela, Edward J. Carpenter and John M. Teal. 1974. Inhibition of nitrogen fixation in salt marshes measured by acetylene reduction. Estuarine and Coastal Marine Science 2:301–305.CrossRefGoogle Scholar
  141. Volk, B. G., S. D. Schemnitz, J. F. Gamble and J. B. Sartain. 1975. Baseline data on everglades soil-plant systems: elemental composition, biomass, and soil depth, pp. 658–672. In: Fred G. Howell, John B. Gentry and Michael H. Smith (eds.), Mineral Cycling in Southeastern Ecosystems, Proceedings of a Symposium held at Augusta, GA, May 1–3, 1974.Google Scholar
  142. Walker, Richard A. 1973. Wetlands preservation and management on Chesapeake Bay: the role of science in natural resource policy. Coastal Zone Management Journal 1(1):75–101.CrossRefGoogle Scholar
  143. Welsh, Barbara L. In press. Comparative nutrient dynamics of a marsh-mudflat ecosystem. Estuarine and Coastal Marine Science.Google Scholar
  144. Wentz, D. A. and G. F. Lee. 1969. Sedimentary phosphorus in lake cores-observations on depositional pattern in Lake Mendota. Environmental Science and Technology 3:754–759.CrossRefGoogle Scholar
  145. Whitney, D. E., G. M. Woodwell and R. W. Howarth. 1975. Nitrogen fixation in Flax Pond, a Long Island salt marsh. Limnol. Oceanogr. 4:640–643.CrossRefGoogle Scholar
  146. Williams, Richard B. and Marianne B. Murdoch. 1967. The potential importance of Spartina alterniflora in conveying zinc, manganese, and iron into estuarine food chains, pp. 431–439. In: Daniel J. Nelson and Francis C. Evans (eds.). Symposium on Radioecology, Proceedings of the Second National Symposium held at Ann Arbor, MI, May 15–17, 1967.Google Scholar
  147. Windom, H. L., W. M. Dunstan and W. S. Gardner. 1975. River input of inorganic phosphorus and nitrogen to the southeastern salt marsh estuarine environment, pp. 309–313. In: Fred G. Howell, John B. Gentry and Michael H. Smith (eds.), Mineral Cycling in Southeastern Ecosystems, Proceedings of a Symposium held at Augusta, GA, May 1–3, 1974.Google Scholar
  148. Wolaver, T., R. L. Wetzel, and K. L. Webb. 1979. Nutrient interactions between salt marsh, intertidal mudflats and estuarine waters. Abstracts of The Fifth Biennial International Estuarine Research Conference, Jekyll Island, GA, Oct. 7–12, 1979.Google Scholar
  149. Wolman, M. G. 1967. A cycle of sedimentation and erosion in urban river channels. Geografisha Annaler 49A:385–395.CrossRefGoogle Scholar
  150. Woodwell, G. M., D. E. Whitney and C.A. S. Hall and R. A. Houghton. 1977. The Flax Pond ecosystem study: exchanges of carbon in water between a salt marsh and Long Island Sound. Limnol. Oceanogr. 22(5):833–838.CrossRefGoogle Scholar
  151. Woodwell, G. M. and D. E. Whitney. 1977. Flax Pond ecosystem study: exchanges of phosphorus between a salt marsh and the coastal waters of Long Island Sound. Marine Biology 41:1–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Scott W. Nixon
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandKingstonUSA

Personalised recommendations