Skip to main content

Dynamical Effects in CW and Pulsed EPR

  • Chapter

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 10))

Abstract

Typical molecular processes with EPR accessible dynamical parameters are catalogued and evaluation of their timescales according to the different EPR methods used for this purpose is described. The detection and description of the dynamics of small cyclic radicals and related nitroxide labels in solids and the connection to the structural parameters are given. Both fast-motion averaging and the method of lincshapc modification duc to chemical exchange are outlined. Some usually overlooked anomalies concerning the activation parameters of the thermally activated rotary motion and their relation to the microscopic variables of the spin-motion system are discussed. The definition of the thermodynamic limits differentiating diffusional motion from quantum motion and the particular ways of the couplings of these motions to the spin system are exemplified. Several experiments manifesting their difference, such as comparison of EPR spectra for classical and for tunnelling rotors, as well as severely distorted EPR spectra including totally quenched (stopped) methyl-type rotors are reviewed and explained. Spin-lattice relaxation and broadening are discussed for fast and slow motions in solids and the characterization of the dynamics according to the effects of motion on the ESE decay are considered in the framework of pulsed EPR. Finally, some standard biological applications in determining the timescales and the motional pattern of disordered matter at the molecular level are described with emphasis to the modern pulsed EPR techniques and some relevant recent developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keith R. Symon “Mechanics.” 3’d edt., Addison-Wesley Publ. Comp. Reading, Massachusetts, 1974.

    Google Scholar 

  2. A.R. Sornes and N.P. Benetis, Chem. Phys. 226: 1–2 151 (1998).

    Google Scholar 

  3. N. Benetis, J. Kowalewski, L. Nordenskiöld, H. Wennerström and P-O Westlund, Mol. Phys. 48: 2 329 (1983).

    Article  CAS  Google Scholar 

  4. Donald A. McQuarrie “Statistical mechanics.” Harper and Row 1976, New York.

    Google Scholar 

  5. A.R. SOmes and N.P. Benetis. J. Magn. Res. 125: 1 52 (1997).

    Article  Google Scholar 

  6. A.R. Sorncs, N.P. Benetis, R. Erickson, A.S. Mahgouh, L. Eherson, and A. Lund, J. Phys. Chem. A 101: 48 8987 (1997).

    Article  Google Scholar 

  7. T. Yamada, K. Komaguchi, M. Shiotani, N.P. Benetis, and A.R. SOrnes, J. Phys. Chem. A 103: 25 4823 (1999).

    Article  CAS  Google Scholar 

  8. Y. Dcligiannakis, M. Louloudi and N. Hadjiliadis, Coord. Chem. Rev. 204 1 (2000).

    Article  Google Scholar 

  9. J. Schmidt and David J. Singel, Ann. Rev. Phys. Chem. (1987) 141.

    Google Scholar 

  10. M. Bowman “Modern Pulsed and continuous-wave electron spin resonance.” Chapt. 1, Edts. L. Kevan and M.K. Bowman, John Wiley andSons, NY 1990, pags. 1–42.

    Google Scholar 

  11. a. J. Gorcester, G.L. Millhauscr, and J.H. Freed “Advanced EPR: Applications in Biology and Biochemistry.” Chapt. 5, Edt. A.J. Hoff, Elsevier, Amsterdam, 1989, pag. 177–242;

    Google Scholar 

  12. b. Jeff Gorcester, Glenn L. Millhauser, and Jack H. Freed. “Modern pulsed and continuous-wave electron spin resonance.” Chapt. 3 Edt. Larry Kevan and Michael Bowman. John Willey and Sons, NY 1990, pags. 119–194.

    Google Scholar 

  13. Arthur Schweiger “Modern pulsed and continuous-wave electron spin resonance.” Chapt. 2, Edts. Larry Kevan and Michael Bowman. John Willey andSons, NY 1990, pags. 43–118.

    Google Scholar 

  14. S.A. Dzuba, I.V. Borovykh, and A.J. Hoff, J. Magn. Res. 133 286 (1998).

    Article  CAS  Google Scholar 

  15. Antonio Barbon, Marina Brustolon, Anna Lisa Maniero, Maurizio Romanelli, and Louis-Claude Brunel, Phys. Chem. Chem. Phys. 1 4015 (1999).

    Article  Google Scholar 

  16. K.M. Salikhov and Yu.D. Tsvetkov “Time Domain Electron Spin Resonance. ” Chapt. 7, Edts. L. Kevan and R.N. Schwartz, John Wiley, NY 1979.

    Google Scholar 

  17. Ian M. Brown “Time Domain Electron Spin Resonance.” Chapt. 6, Edts. L. Kevan and R.N. Schwartz, John Wiley, NY 1979.

    Google Scholar 

  18. A. Abragam “The Principles of Nuclear Magnetism.” Clarendon press, Oxford 1961. Page references of specific topics of interest here: Spin-packet pag. 397, spin-diffusion pags. 378–389 and 103–111, and additional reading pgs.10–38 and 133–144. Spin temperature pgs. 133–144. Relaxation due to paramagnetic impurities pags. 378–398. Notice that definition of spin diffusion in pags. 59 and 61, concerns actually the self= diffusion of spin-bearing molecules measured when an external field gradient is applied on the top of the static field. An extensive consideration of the broadening in solid state is given in Abragam Chapter X, but it concerns nuclear relaxation. Many important aspects and definitions about electron spin relaxation at very low temperatures are found in Abragam and Bleancy, ref. [49], but arc specialized to paramagnetic metal ions.

    Google Scholar 

  19. J. Kowalewski, 1.. N.rdenskiöld, N. Benetis and P.O. Westlund, Progr. NMR Spectr. 17 141 (1985).

    Google Scholar 

  20. Yu.V. Toropov, S.A. Dzuba, Yu.D. Tsvetkov, V. Monaco, F. Formaggio, M. Crisma, C. Toniolo, and J. Raap, Appt Magn. Res. 15 237 (1998).

    Article  CAS  Google Scholar 

  21. Sergei A. Dzuba, Hiroshi Watari, Yuhei Shimoyama, Alexandr G. Maryasov, Yoshio Kodera, and Asako Kawamori, J. Magn. Res. 115 80 (1995).

    Article  Google Scholar 

  22. O.N. Antzutkin, N.P. Benetis, M. Lindgren and A. Lund, Chem. Phys. 169 195 (1993).

    Article  CAS  Google Scholar 

  23. F. Bonon, M. Brustolon, A.L. Maniero, and U. Segre, Appl. Magn. Res. 3 779 (1992).

    Article  CAS  Google Scholar 

  24. J.H. Freed, J. Chem. Phys. 43 1710 (1965).

    Google Scholar 

  25. S. Clough and F. Poldy, J. Chem. Phys. 51 2076 (1969).

    Article  CAS  Google Scholar 

  26. Marina Brustolon, Teresa Cassol, Lauretta Micheletti, and Ulderico Segre, Mol. Phys. 57: 5 1005 (1986).

    Article  CAS  Google Scholar 

  27. A. Carrington and A.D. Mci,achlan. “Introduction to Magnetic Resonance.” Harper, NY 1967.

    Google Scholar 

  28. S.A. Dzuba, K.M. Salikhov, and Yu.D. Tsvetkov, Chem. Phys. Letts. 79 568 (1981).

    Article  CAS  Google Scholar 

  29. D.G. Lister, J.N. Macdonald and N.L. Owen “Internal Rotation and Inversion. An Introduction to Large Amplitude Motions in Molecules. ” Academic press, London 1978.

    Google Scholar 

  30. E.P. Kirillina, S.A. Dzuba, A.G. Maryasov, and Yu.D. Tsvetkov, Appl. Magn. Res. 21 203 (2001).

    Article  Google Scholar 

  31. N.A. Salih, O.I. Eid, N.P. Benetis, M. Lindgren, A. Lund, and E. Sagstuen, Chem. Phys. 212 409 (1996).

    Article  CAS  Google Scholar 

  32. J.E. Wertz and J.R. Bolton. “Electron Spin Resonance. Elementary Theory and Practical Applications.” McGraw-Hill, N.Y. 1972.

    Google Scholar 

  33. Frank J. Adrian, J. Chem. Phys. 88: 5 3216 (1988).

    Article  Google Scholar 

  34. L. Sjöqvist, N.P. Bcnctis and A. Lund, Chem. Phys. 156 457 (1991);

    Article  Google Scholar 

  35. M. Lindgren, R. Erickson, N.P. Benetis, and O. Antzutkin, J. Chem. Soc. Perk. Trans. 2 2009 (1993);

    Google Scholar 

  36. M. Lindgren, N.P. Benetis, M. Matsumoto, and M. Shiotani, Appl. Magn. Res. 9 45 (1995).

    Article  CAS  Google Scholar 

  37. R.R. Rakhimov, N.P. Benetis, A. Lund, J.S. Hwang, A.I. Prokofiev, and Y.S. Lehedev, Cheap. Phys. Let. 255: 1–3 156 (1996).

    Google Scholar 

  38. A. Rockenbauer, M. Györ, H.O. Hankovszky, and K. Hideg. “Electron Spin Resonance. ” Chap. 5, Vol. 11A, pag. 145–182, Royal Soc. of Chem. 1987.

    Google Scholar 

  39. C. Heller and H.M. McConnell, J. Chem. Phys. 32 1535 (1960).

    Article  CAS  Google Scholar 

  40. F. Bonon, M Bustolon, A.L. Maniera, and U. Segre, Appl. Magn. Res. 3 779 (1993).

    Article  Google Scholar 

  41. E.W. Stone and A.H. Maki, J. Chem. Phys. 37: 6 1326 (1962).

    Article  CAS  Google Scholar 

  42. George Arfken “Mathematical methods for Physicists.” Second edt. Academic press, NY 1970.

    Google Scholar 

  43. Nikolas P. Benetis and Anders R. St mes, unpublished.

    Google Scholar 

  44. Yakob S. Lehedev “Time Domain Electron Spin Resonance. ” Chapt. 8, Edts. L. Kevan and R.N. Schwartz, John Wiley, NY 1979.

    Google Scholar 

  45. H.Y. Carr and E.M. Purcell, Phys. Rev. 94 630 (1954).

    Article  CAS  Google Scholar 

  46. A. Schweiger and G. Jeschke “Principles of Pulse Electron Paramagnetic Resonance”, Oxford University Press 2001.

    Google Scholar 

  47. S.A.Dzuba, Ye,A. Golovina, andYu.D. Tsvetkov,.1. Magn. Res. B 101 134 (1993).

    Google Scholar 

  48. G.R. Luckhurst “Electron Spin Relaxation in Liquids. ” Chapt. X, Edts. L.T. Muus and P.W. Atkins. Plenum Press, NY 1972.

    Google Scholar 

  49. Sergei A. Dzuba, Phys. Letts. 213 77 (1996).

    Article  Google Scholar 

  50. S.A. Goldman, G.V. Bruno, and J.H. Freed, J. Phys. Chem. 76: 13 1858 (1972).

    Article  CAS  Google Scholar 

  51. J. Buitink, S.A. Dzuba, F.A. Hockstra, and Yu. D. Tsvctkov, J. Magn. Res. 142 364 (2000).

    Article  CAS  Google Scholar 

  52. A. Abragam and B. Bleaney “Electron Paramagnetic Resonance of Transition Ions.” Dover Publications, inc NY 1970.

    Google Scholar 

  53. Michael K. Bowman and Larry Kevan “Time Domain Electron Spin Resonance.” Chapt. 3, Edts. L. Kevan and R.N. Schwartz, John Wiley, NY 1979.

    Google Scholar 

  54. A.G. Redfield, IBM J. Res. Dev. 1 19 (1957);

    Google Scholar 

  55. A.G. Redfield, Adv. Magn. Reson. 1 1 (1965).

    Google Scholar 

  56. N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73 679 (1948).

    Article  CAS  Google Scholar 

  57. R.K. Wangsness and F. Bloch, Phys. Rev. 89 (1953) 728;

    Article  CAS  Google Scholar 

  58. F. Bloch, Phys. Rev. 102 104 (1956).

    Article  CAS  Google Scholar 

  59. C.P. Slichter “Principles of Magnetic Resonance.” Third Edition, Springer Verlag, Berlin 1990.

    Google Scholar 

  60. Beware that the term adiabatic has been used in several other magnetic resonance contexts concerning both solids and liquids. In the present case we mean the use of the Ssecular Hamiltonian. The quantum mechanical or Ehrenfest sense of adiabaticity according to Abragam ref. [17], pags. 135–136, is the one where the variation of the field, or generally any other external parameter of the system, is applied in such a way that no spin transitions are induced Thus, the populations of the levels are maintained during the change, while obviously heat has to flow to or from the ensemble to compensate the parametric change in the energy (Hamiltonian). Such can also be the so called sudden change that conserves the spin temperature The thermodynamic sense of an adiabatic transformation on the other hand, has the profound interpretation of prohibited exchange of energy between the spins and the lattice. Such a reversible change of the system close to equilibrium is also isentropic,i.e. it is conserving the entropy, Abragam ref. [17] pags. 144–149. Examples belonging in this sense of adiabaticity are the cases of adiabatic demagnetization and adiabatic fast passage,or simply fast passage,discussed in detail also for nuclei by E. Fukushima and S.B.W. Roeder in `Experimental Pulse NMR. A Nuts and Bolts Approach.“ Addison-Wesley Publishing Company, Inc, London 1981. Adiabatic fast passage means slow enough rate of change of the field through resonance in order to be reversible but fast enough so that exchange of energy with the lattice by T 1 processes not to be possible, see also Slichter’s book ref. [54] Chapt. 6.

    Google Scholar 

  61. N.P. Benetis. “Nuclear-Spin Relaxation in Paramagnetic Metal Complexes and the Slow-Motion Problem for the Electron Spin.” Ph. D. Thesis, University of Stockholm 1984.

    Google Scholar 

  62. P. O. Westlund, N. Benetis and H. Wennerström, Mol. Phys. 61: 1 177 (1987).

    Article  CAS  Google Scholar 

  63. N. Benetis and J. Kowalewski, J. Magri Res. 65 13 (1985).

    CAS  Google Scholar 

  64. N. Benetis, J. Kowalewski, L. Nordenskiöld, H. Wennerström and P.O. Westlund, J. Magn. Res. 58 261 (1984).

    CAS  Google Scholar 

  65. J. Heinzer, Mol. Phys. 22: 1 167 (1971);

    Article  CAS  Google Scholar 

  66. J. Heinzer, Program 209, QCPE Indiana University, 1972.

    Google Scholar 

  67. Harry Kurreck “Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution.” Wolfgang Lubitz VCH, 1988.

    Google Scholar 

  68. Leslie J. Schwartz, Arthur E. Stillman, and Jack H. Freed, J. Chem. Phys. 77 5410 (1982).

    Article  CAS  Google Scholar 

  69. U.E. Nordh and N.P. Benetis, Chem. Phys. Lett. 244 321 (1995).

    Article  CAS  Google Scholar 

  70. L. Sjöqvist, A. Lund, and J. Maruani, Chem. Phys. 125 293 (1988);

    Article  Google Scholar 

  71. N.P. Benetis, L. Sjöqvist, A. Lund, and J. Maruani, J. Magn. Res. 95 523 (1991).

    CAS  Google Scholar 

  72. J.A. Ladd and H.W. Wardale `Internal Rotation in Molecules.“ Chapt. 5, Edt. W.J. Orville-Thomas, John Wiley and Sons NY 1974.

    Google Scholar 

  73. Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun. “Principles of Nuclear Magnetic Resonance in One and Two Dimensions.” Clarendon Press, Oxford 1991.

    Google Scholar 

  74. H.M. McConnell, J. Chem. Phys. 28 430 (1958).

    Article  Google Scholar 

  75. N.P. Benetis, M. Lindgren, H-S. Lee, and A. Lund, J. Appl. Res. 1 267 (1990).

    CAS  Google Scholar 

  76. N.P. Benetis, A.S. Mahgoub, A. Lund and U.E. Nordh, Chem. Phys. Lett. 218 551 (1994).

    Article  CAS  Google Scholar 

  77. R. Erickson, U. Nord, N.P. Benetis and A. Lund, Chem. Phys. 168: 1 91 (1992).

    Article  CAS  Google Scholar 

  78. W. Press “Tracts in Molecular Physics.” V. 92, Springer-Vela Berlin, 1981.

    Google Scholar 

  79. Masaru Shiotani, Tomoya Yamada, Kenji Komaguchi, Nikolas P. Benetis, Anders Lund and Anders R. Sornes. “The Meeting on Tunneling Reactions and Low Temperature Chemistry”, JAERI- Conf. 98–014, (1998) pags. 58–63.

    Google Scholar 

  80. M. Lindgren, G.R. Eaton, S.S. Eaton, B.-H. Jonsson, P. Hammarström, M. Svensson, and U. Carlsson, J. Chem. Soc. Perkin Trans. 2 2549 (1997);

    Google Scholar 

  81. A. Zecevic, G.R. Eaton, S.S. Eaton, and M. Lindgren, Mol. Phys. 95 1255 (1998);

    Article  CAS  Google Scholar 

  82. Martina Huber, Mikael Lindgren, Per Hammarström, Lars-Göran Mdrtensson, Uno Carlsson, Gareth R. Eaton, Sandra S. Eaton, Biophys. Chem. 94 245 (2001).

    Article  Google Scholar 

  83. S. Clough and F. Poldy, J. Chem. Phys. 51 2076 (1969).

    CAS  Google Scholar 

  84. N.L. Owen “Internal Rotation in Molecules.” Chapt. 6, Edt. W.J. Orville-Thomas, John Wiley and Sons NY 1974.

    Google Scholar 

  85. Nikolas P. Benetis, Paresh Dave, and Daniella Goldfarb, J. Magn. Res. 158 126 (2002).

    Article  Google Scholar 

  86. J.H Freed “Multiple Electron Resonance Spectroscopy. ” Edts. M.M. Dorio and J.H. Freed, Plenum Press 1979.

    Google Scholar 

  87. A.E. Stillman, L.J. Schwartz, and J.H Freed, J. Chem. Phys. 73 3502 (1980).

    Article  CAS  Google Scholar 

  88. L.D. Kispert, M.K. Bowman, J.R. Norris, and M.S. Brown, J. Chem. Phys. 76: 1 26 (1982).

    Article  CAS  Google Scholar 

  89. S.A. Dzuba, A.G. Maryasov, K.M. Salikhov, and Yu. D. Tsvetkov, J. Magn. Res. 58: 1 95 (1984).

    CAS  Google Scholar 

  90. A.R. SOrnes and N.P. Benetis, Chem. Phys. Lett. 287 590 (1998).

    Article  CAS  Google Scholar 

  91. L.V. Kulik, I.A. Grigoryev, E.S. Salnikov, S.A. Dzuba, and Yu. D. Tsvetkov, Submitted, July 2002.

    Google Scholar 

  92. Roland Erickson, and Anders Lund, Linköping University, private communication.

    Google Scholar 

  93. S.A. Dikanov, Yu.D. Tsvetkov “Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy.”Boca Raton: CRC Press, 1992.

    Google Scholar 

  94. D. Gamliel and J.H. Freed, J. Magn. Res. 89 60 (1990).

    CAS  Google Scholar 

  95. V.F. Yudanov, K.M. Salikhov, G.M. Zhidomirov, and Yu.D. Tsvetkov, Teor. Eksp. Khim. 5 663 (1969).

    CAS  Google Scholar 

  96. M. Romanelli and L. Kevan, Concepts Magn. Res. 9 (1997) 403; ibid 10 1 (1998).

    Google Scholar 

  97. B. Herzog, and E.L. Hahn, Phys. Rev. 103 148 (1956).

    Article  Google Scholar 

  98. Rikard Owenius “Studies of Local Interactions between and within Proteins using Site - Directed Labeling Techniques.” PhD thesis, Dept. of Physics and Measurement Technology, Linköping University, Sweden 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benetis, N.P. (2003). Dynamical Effects in CW and Pulsed EPR. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids. Progress in Theoretical Chemistry and Physics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5166-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5166-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5246-2

  • Online ISBN: 978-1-4757-5166-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics