High Turnover NAD Regeneration in the Coupled Dehydrogenase Conversion of Sorbitol to Fructose

  • R. P. Chambers
  • E. M. Walle
  • W. H. Baricos
  • W. Cohen


Significant progress has recently been made in the commercial application of a limited number of enzyme processes. However, it is important to note that none of these applications involve enzymes with dissociable cofactors. Since four of the six classes of enzymes require cofactors, the absence of efficient and economic methods for cofactor-requiring enzymatic processes has presented a major obstacle to reaching the full potential of enzyme technology. Cofactor-requiring enzymatic processes of considerable interest include the transformation of glucose to a variety of chemicals, the conversion of lignin by-products to amino acids, enzymatic synthesis of pharmaceuticals such as chenodeoxycholate and bacitracin, the capture of solar energy through biophotolysis, stereo-specific steroid transformations, epoxidation of fatty acids and many others.


Immobilize Enzyme Activate Carbon Adsorption Cofactor Regeneration Active Cofactor Enzyme Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BARICOS, W.H., CHAMBERS, R.P. & COHEN, W. Enzyme Technol. Digest 4: 39, 1975.Google Scholar
  2. 2.
    OPPENHEIMER, N.J. & KAPLAN, N.O. Biochemistry 13: 4685, 1974.CrossRefGoogle Scholar
  3. 3.
    KAPLAN, N.O., COLOWICK, S.P. & BARNES, C.C. J. BioZ. Chem. 191: 461, 1951.Google Scholar
  4. 4.
    GARDNER, C.R., COLTON, C.K., LANGER, R.S., HAMILTON, B.K., ARCHER, M.C. & WHITESIDES, G.M. In “Enzyme Engineering Vol 2” (Eds. E.K. Pye and L.B. Wingard, Jr.) Plenum Press, New York, 1974, p. 209.CrossRefGoogle Scholar
  5. 5.
    LOWRY, O.H., PASSONNEAU, J.V. & ROCK, M.K. J. Biol. Chem. 236: 2756, 1961.Google Scholar
  6. 6.
    LOWRY, 0.H., PASSONNEAU, J.V., SCHULZ, D.W. & ROCK, M.K. J. BioZ. Chem. 236: 2746, 1961.Google Scholar
  7. 7.
    PINDER, S., CLARK, J.B. & GREENBAUM, A.L. Meth. Enzymol. ZBB: 20, 1971.Google Scholar
  8. 8.
    JONES, J.B. & TAYLOR, K.E. J. Chem. Soc. Chem. Commun. 1973: 205, 1973.CrossRefGoogle Scholar
  9. 9.
    CHAMBERS, R.P., FORD, J.R., ALLENDER, J.H., BARICOS, W.H. & COHEN, W. In “Enzyme Engineering Vol 2” (Eds. E.K. Pye and L.B. Wingard, Jr.) Plenum Press, New York, 1974, p. 195.CrossRefGoogle Scholar
  10. 10.
    FINK, D.J. & RODWELL, V.W. Biotechnol. Bioeng. 17: 1029, 1975.CrossRefGoogle Scholar
  11. 11.
    CHAKRAVORTY, M., VEIGA, L.A., BACILA, M. & HORECKER, B.L. J. Biol. Chem. 237: 1014, 1962.Google Scholar
  12. 12.
    BACKLIN, K.I. Acta. Chem. Scand. 22: 1279, 1958.CrossRefGoogle Scholar
  13. 13.
    FORD, J.R., LAMBERT, A.H., COHEN, W. & CHAMBERS, R.P. In “Enzyme Engineering Vol. 1” (Ed. L.B. Wingard, Jr.) J. Wiley, New York, 1972, p. 267.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. P. Chambers
    • 1
  • E. M. Walle
    • 1
  • W. H. Baricos
    • 1
  • W. Cohen
    • 1
  1. 1.Departments of Chemical Engineering and BiochemistryTulane UniversityNew OrleansUSA

Personalised recommendations