Synthesis of Organic Acids and Modification of Steroids by Immobilized Whole Microbial Cells

  • K. Venkatasubramanian
  • A. Constantinides
  • W. R. Vieth


As part of our continued efforts to develop a technology based on collagen immobilized enzymes and whole microbial cells, we have investigated a number of reaction schemes catalyzed by collagen-whole cell complexes. We initiated our studies on immobilized whole cell systems with simple systems such as glucose isomerization which involve only a single enzymatic reaction. The encouraging results obtained in this case (production of high fructose syrup by immobilized Streptomyces venezuelae) (1,2) prompted us to examine other systems listed in Table 1.


Immobilize Cell Fumaric Acid Gluconic Acid Monosodium Glutamate Immobilize Cell Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saini, R. and Vieth, W.R. J. AppZ. Chem. Biotechnol. 25: 115, 1975.CrossRefGoogle Scholar
  2. 2.
    Vieth, W.R. and Venkatasubramanian, K. In “Methods in Enzymology” Vol. 44 (Ed. K. Mosbach) Academic Press, New York, 1976, p. 768.Google Scholar
  3. 3.
    Vieth, W.R. and Venkatasubramanian, K. Chem. Technol. 4: 47, 1974.Google Scholar
  4. 4.
    Vieth, W.R. and Venkatasubramanian, K. In “Methods in Enzymology” Vol. 44 (Ed. K. Mosbach) Academic Press, New York, 1976, p. 243.Google Scholar
  5. 5.
    Tosa, T., Sato, T., Mori, J. and Chibata, I. AppZ. Microbiol. 27: 886, 1974.Google Scholar
  6. 6.
    Chibata, I., Tosa, T., SATO, T., MORI, T. and YAMAMOTO, K. In “Enzyme Engineering” Vol 2 (Eds. E.K. Pye and L.B. Wingard, Jr.) Plenum Press, New York, 1974.Google Scholar
  7. 7.
    Charney, W. and Herzog, H.L. “Microbiol Transformation of Steroids” Academic Press, New York, 1967.Google Scholar
  8. 8.
    Nobile, A. and Charney, W. J. Am. Chem. Soc. 77: 4184, 1955.CrossRefGoogle Scholar
  9. 9.
    Montana, M. M.S. Thesis, Rutgers University, New Brunswick, New Jersey, 1975.Google Scholar
  10. 10.
    Pefifer, V.F., Vonjovich, E., Heger, E.N. and Nelson, G.E.N. Ind. Eng. Chem. 50: 1009, 1958.CrossRefGoogle Scholar
  11. 11.
    Misenheimer, T.J., Anderson, R.F., Lagoda, A.A. and Tayler, D.D. AppZ. Microbiol. 13: 393, 1965.Google Scholar
  12. 12.
    Aida, K., Fujii, M. and Asai, T. Proc. Japan Academy 52: 595, 1956.Google Scholar
  13. 13.
    Ghiretti, F. and Barron, E.S.G. Biochim. Biophys. Acta, Z5: 445, 1954CrossRefGoogle Scholar
  14. 14.
    Remachandran, S. and Gottlieb, D. Biochim. Biophys. Acta. 69:74, 1963Google Scholar
  15. 15.
    Campbell, J.R., Ramakrishnan, T., Linnes, A.B. and Eagles, B.A. Canad. J. Microbiol. 2: 304, 1956.CrossRefGoogle Scholar
  16. 16.
    Venkatasubramanian, K. and Corman, J. Unpublished results.Google Scholar
  17. 17.
    Kinoshita, S. and Tanaka, K. In “The Microbial Production of Amino Acids” (Ed. K. Yamada) John Wiley and Sons, New York, 1972.Google Scholar
  18. 18.
    Slowinski, W. and Charm, S.E. Biotechnol. Bioeng. 15: 973, 1973.CrossRefGoogle Scholar
  19. 19.
    Brownstein, A.M., Constantinides, A. and Vieth, W.R. “Glutamic Acid Synthesis Via Immobilized Enzymes: A Techno-Economic Analysis” Paper presented at the ACS National Meeting, Atlantic City, September 9, 1974.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • K. Venkatasubramanian
    • 1
  • A. Constantinides
    • 1
  • W. R. Vieth
    • 1
  1. 1.Dept. of Chemical and Biochemical EngineeringRutgers UniversityNew BrunswickUSA

Personalised recommendations