Purification of Dehydrogenases and Kinases by Affinity Chromatography

  • C.-Y. Lee
  • L. H. Lazarus
  • N. O. Kaplan


The concept of using adenine nucleotide derivatives as general ligands in affinity chromatography was first proposed by Mosbach and his coworkers (1-3). Various immobilized adenine nucleotide derivatives have been prepared and used in the selective purification of enzymes by means of general ligand affinity chromatography (11, 17–21). From the efforts of many workers it is apparent that further development of this methodology would greatly accelerate our understanding of enzymes and their utilization in biochemical research, clinical chemistry and industrial production. Selective purification of enzymes by general ligand affinity chromatography is based on the principle that a single immobilized general ligand has the capacity to adsorb a large number of enzymes, or a given family of enzymes, which either require the same cofactor or have a common inhibitor or activator.


Creatine Kinase Lactate Dehydrogenase Pyruvate Kinase Malate Dehydrogenase Affinity Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LARSSON, P.C. and MOSBACH, K. BiotechnoZ. Bioeng. 13: 393, 1971.CrossRefGoogle Scholar
  2. 2.
    MOSBACH, K., GUILFORD, H., OHLSSON, R. and SCOTT, M. Biochem. J. 227: 625, 1972.Google Scholar
  3. 3.
    GUILFORD, H., LARSSON, P.O. and MOSBACH, K. Chemica Scripta 2: 165, 1972.Google Scholar
  4. 4.
    LEE, C.-Y., LAPP D.A., WERMUTH, B., EVERSE, J. and KAPLAN, N.O. Arch. Biochem. Biophys. 161: 561, 1974.CrossRefGoogle Scholar
  5. 5.
    LEE, C.-Y. and KAPLAN, N.O. Arch. Biochem. Biophys. 168: 665, 1975.CrossRefGoogle Scholar
  6. 6.
    LEE, C.-Y., KAPLAN, N.O. J. Macromol. Sci. Chem. 20: 15, 1976.Google Scholar
  7. 7.
    TRAYER, I.P., TRAYER, H.R., SMALL, D.A.P. and BOTTOMLEY, R.C. Biochem. J. 139: 609, 1974.Google Scholar
  8. 8.
    EVANS, F., LEE, C.-Y., KAPLAN, N.O. Presented at the Pacific Conference on Chemistry and Spectroscopy, October, 1975.Google Scholar
  9. 9.
    BARRY, S. and O’CARRA, P. Biochem. J. 135: 595, 1973.Google Scholar
  10. 10.
    LINDBERG, M., LARSSON, P.-0. and MOSBACH, K. Eur. J. Biochem. 40: 187, 1973.CrossRefGoogle Scholar
  11. 11.
    MOSBACH, K. Meth. Enzymol. 34: 229, 1974.CrossRefGoogle Scholar
  12. 12.
    BRODELIUS, P., LARSSON, P.-0. and MOSBACH, K. Eur. J. Biochem. 47: 81, 1974.CrossRefGoogle Scholar
  13. 13.
    JERGIL, B., GUILFORD, H. and MOSBACH, K. Biochem. J. 139: 441, 1974.Google Scholar
  14. 14.
    AXEN, R. and PORATH, J. Nature 210: 367, 1966.CrossRefGoogle Scholar
  15. 15.
    EVERSE, J., BARNETT, R.E., THORNE, C.J.R. and KAPLAN, N.O. Bioorg. Chem. 1: 207, 1971.CrossRefGoogle Scholar
  16. 16.
    BUCHER, T. and PFLEIDERER, G. Meth. Enzymol. 1: 435, 1955.CrossRefGoogle Scholar
  17. 17.
    LEE, C.-Y., LAZARUS, L.H., KABAKOFF, D.S., RUSSELL, P.J., LAVER, M. and KAPLAN, N.O. Arch. Biochem. Biophys. 178: 8, 1977.CrossRefGoogle Scholar
  18. 18.
    LEE, C.-Y. and JOHANSSON, C.-J. Anal. Biochem. 77: 90, 1977.CrossRefGoogle Scholar
  19. 19.
    BACHMAN, B.K. and LEE, C.-Y. Anal. Biochem. 72: 153, 1976.CrossRefGoogle Scholar
  20. 20.
    LAZARUS, L.H., LEE, C.-Y. and WERMUTH, B. Anal. Biochem. 74: 138, 1976.CrossRefGoogle Scholar
  21. 21.
    TAYLOR, S.S., LEE, C.-Y., SWAIN, L. and STAFFORD, P.H. Anal. Biochem. 76: 45, 1976.CrossRefGoogle Scholar
  22. 22.
    ESCH, F. and LEE, C.-Y. Unpublished data.Google Scholar
  23. 23.
    SMITH, L.T. and LEE, C.-Y. Unpublished data.Google Scholar
  24. 24.
    LEE, C.-Y. Unpublished data.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • C.-Y. Lee
    • 1
  • L. H. Lazarus
    • 1
  • N. O. Kaplan
    • 1
  1. 1.Department of ChemistryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations