Enzyme Immobilization in Collagen Films Adhered to Semi-Rigid Supports: The Enzymatic Sponge Reactor

  • O. Maldonado
  • C. Rolz

Abstract

Among the newer methods of enzyme and whole cells immobilization which have been successfully developed (1–3) one of the most promising is immobilization in a collagen matrix (4). Three different techniques using collagen matrices have been tried: impregnation, molecular complexation and electrocodeposition. Collagen, one of the most common protein constituents of animal tissues and a major protein component of skin, bone, tendons and other connective tissues is important for its fibrous nature (5–8).

Keywords

Polyurethane Foam Invertase Activity Tubular Reactor Collagen Film Major Protein Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LEWIS, W. and MIDDLEMAN, S. AIChE Journal 20: 1012, 1974.CrossRefGoogle Scholar
  2. 2.
    RONY, P.R. Biotechnol. Bioeng. Z3: 431, 1971.CrossRefGoogle Scholar
  3. 3.
    TODA, K. and SHODA, M. Biotechnol. Bioeng. 17: 481, 1975.CrossRefGoogle Scholar
  4. 4.
    VIETH, W.R. and VENKATASUBRAMANIAN, K. Chemtech 4: 47, 1974.Google Scholar
  5. 5.
    GUSTAVSON, K.H. “The Chemistry and Reactivity of Collagen”, Academic Press, New York, 1956.Google Scholar
  6. 6.
    MARK, H.F., GAYLORD, N.G. and BIKALES, N.M. (Editors) Encyclopedia of Polymer Science and Technology. Plastics, resins, rubbers, fiber. 4. Wiley-Interscience, New York, 1966.Google Scholar
  7. 7.
    NEMETSCHEK, Th. In “Collagen” (Ed. N. Ramanathan) WileyInterscience, New York, 1962.Google Scholar
  8. 8.
    RAMACHANDRAN, G.N., SASISEKHARAN, V. and THATHACHAR, Y.T. In “Collagen” (Ed. N. Ramanathan ), Wiley Interscience, New York, 1962.Google Scholar
  9. 9.
    REED, R. and STAINSBY, G. In “Collagen” (Ed. N. Ramanathan) Wiley-Interscience, New York, 1962.Google Scholar
  10. 10.
    HAAS, G.J. and FLEISCHMAN, A.I. Wallestein Labs. Commun. 21: 139, 1958.Google Scholar
  11. 11.
    HODGE, J.E. and HOFREITER, T. Meth. Carbohyd. Chem. 1: 380 1962.Google Scholar
  12. 12.
    MONSAN, P. Thesis No. 315, Universite Paul Sabatier, 1971.Google Scholar
  13. 13.
    NAKAGAWA, H., KAWASAKI, Y., OGUKA, N., and TAKAHAMA, H. Agr. Biol. Chem. 36: 18, 1971.CrossRefGoogle Scholar
  14. 14.
    NEGORO, H. and KITO, E. J. Ferm. Technol 51: 103, 1973.Google Scholar
  15. 15.
    GASCON, S., NEUMANN, N. and LAMPEN, O. J. Biot. Chem. 243: 1573, 1968.Google Scholar
  16. 16.
    MASON, R.D. and WEETALL, H.H. BiotechnoZ, Bioeng. 14: 637, 1972.CrossRefGoogle Scholar
  17. 17.
    BOWSKI, L., SAINI, R., RYU, D.Y. and VIETH, W.R. BiotechnoZ. Bioeng. 13: 641, 1971.CrossRefGoogle Scholar
  18. 18.
    MAEDA, H. and SUZUKI, H. BiotechnoZ. Bioeng. 15: 403, 1973.CrossRefGoogle Scholar
  19. 19.
    MARCONI, W. GULINELLI, S. and MORISI, F. BiotechnoZ. Bioeng. 16: 501, 1974.CrossRefGoogle Scholar
  20. 20.
    WANG, S.S. and VIETH, W.R. Biotechnol. Bioeng. 15: 93, 1973.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • O. Maldonado
    • 1
  • C. Rolz
    • 1
  1. 1.Central American Research Institute for IndustryICAITIGuatemalaGuatemala, C.A.

Personalised recommendations