Physicochemical Aspects of Immobilized Enzyme-Matrix Interactions

  • I. V. Berezin


The utilization of immobilized enzymes as catalytic and regulating agents opens up vast possibilities for their application in medicine and chemical technology. On the other hand, immobilized enzymes are useful in the study of basic problems in biochemistry. The development of scientific principles relevant to the production of immobilized enzymes having high stability is a major concern of applied enzymology. Theoretically, the discovery of ways to stabilize enzymes would provide a basis for understanding the general mechanisms of protein denaturation which are still unknown (1,2). In addition, the determination of factors governing enzyme stability would answer a very important general question in biochemistry concerning the reasons why most purified enzymes have a lowered stability compared to enzymes in their natural environment (2). As a practical consequence the solution to this problem would make it possible to develop a general strategy for the synthesis of enzyme preparations suitable for long-term operation.


Enzyme Molecule Thermal Inactivation Oligomeric Species Acryloyl Chloride Physicochemical Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    JOLY, M. “A Physico-chemical Approach to the Denaturation of Proteins”, Academic Press, London, 1965.Google Scholar
  2. 2.
    MAKSIMOV, V.I. Usp. Sovr. Biol. (Russ. ed), 76: 21, 1973.Google Scholar
  3. 3.
    GOLDMAN, E., GOLDSTEIN, L., KATCHALSKI, E. In “Biochemical Aspects of Reaction on Solid Supports” (Ed. G.R. Stark), Academic Press, New York, 1971, p.l.Google Scholar
  4. 4.
    ZABORSKY, O.R. “Immobilized Enzymes” C.R.C. Press, Cleveland, Ohio, 1973.Google Scholar
  5. 5.
    Immobilizovannye Fermenty“ (Immobilized Enzymes, Russ. ed.), (Eds. I.V. Berezin, V.K. Antonov and K. Martinek) Moscow University Press, Moscow, 1975, Chapt. 5.Google Scholar
  6. 6.
    BEREZIN, I.V., MARTINEK, K. Bioorg. Khim. (Russ. ed) 1: 4, 1975.Google Scholar
  7. 7.
    BEREZIN, I.V., MARTINEK, K. In “Structura i Functsii Aktivnych Tsentrov Fermentov” (Structure and Function of Active Centers of Enzymes) ( Russ. ed.), Nauka, Moscow, 1974, p. 5.Google Scholar
  8. 8.
    MARTINEK, K., KLYOSOV, A.A., KAZANSKAYA, N.F., BEREZIN, I.V. Int. J. Chem. Kin. 6: 801, 1974.CrossRefGoogle Scholar
  9. 9.
    BEREZIN, I.V., KERSCHENGOL’TS, B.M., UGAROVA, N.N. Dokl. Akad. Nauk. SSSR (Russ. ed.) 223:5, 1975.Google Scholar
  10. 10.
    MELROSE, G.J.H. Rev. Pure Appt. Chem. 21: 83, 1971.Google Scholar
  11. 11.
    JAWOREK, D. In “Insolubilized Enzymes” (Eds. M. Salmons, C. Sarnio and S. Garattini) Raven Press, New York, 1971.Google Scholar
  12. 12.
    CHERNYSHOVA, A.V., MARTINEK, K., KLIVANOV, A.M., BEREZIN, I.V. Izv. Akad. Nauk. SSSR ser Khim. (Russ. ed.) N08,1975.Google Scholar
  13. 13.
    MARTINEK, K., GOLDMACHER, V.S., KLIBANOV, A.M., BEREZIN, I.V. FEBS LETTERS 5Z: 152, 1975.CrossRefGoogle Scholar
  14. 14.
    MARTINEK, K., KLIBANOV, A.M., CHERNYSHOVA, A.V., BEREZIN, I.V. Dokl. Akad. Nauk. SSSR (Russ. ed.) 223:1, 1975.Google Scholar
  15. 15.
    BEREZIN, I.V., KLIBANOV, A.M., MARTINEK, K. Biochim. Biophys. Acta, 364: 193, 1974.Google Scholar
  16. 16.
    BEREZIN, I.V., KLIBANOV, A.M., GOLDMACHER, V.S., MARTINEK, K. Dokl. Akad. Nauk SSSR (Russ. ed.) 218:367, 1974.Google Scholar
  17. 17.
    HIXSON, N.F. BiotechnoZ. Bioeng. 15: 1011, 1973.CrossRefGoogle Scholar
  18. 18.
    FOSTER, R.L., THOMAS, A.R. Biochim. Biophys. Acta, 321: 409, 1973.CrossRefGoogle Scholar
  19. 19.
    WESTMAN, T. Biochem. Biophys. Res. Commun. 35: 313, 1969.CrossRefGoogle Scholar
  20. 20.
    GOLDSTEIN, L. Biochemistry, 11: 4072, 1974.CrossRefGoogle Scholar
  21. 21.
    SPECHT, B.-U., SEINFELD, H., BRENDEL, W. Hoppe-Seyler’s Z. Physiol. Chem. 354: 1699, 1973.Google Scholar
  22. KOL’TSOVA, S.V., GLIKINA, M.V., ILLARIONOVA, N.G., SAMSONOV, G.V. Mol. Biol. (Russ. ed.) 5:225, 1971.Google Scholar
  23. 23.
    WYKES, J.R., DUNNILL, P., LILLY, M.D. Biochim. Biophys. Acta 250: 522, 1971.CrossRefGoogle Scholar
  24. 24.
    EDDIS, M. Ann. Rev. Biophys. Bioeng. 3: 179, 1974.CrossRefGoogle Scholar
  25. 25.
    GOL’MAN, N.S., LUKOYANOVA, M.A., OSTROVSKII, D.N. “Membrany Bakterii i Dykhatel’naya Tsep” (Bacterial Membranes and Respiratory Chain) (Russ. ed.) Moscow, 1973.Google Scholar
  26. 26.
    BEREZIN, I.V. UGAROVA, N.N., KERSHENGOL’TS, B.M., BROVKO, L.Yu, Biokhimiya (Russ. ed.) 40: 297, 1975.Google Scholar
  27. BEREZIN, I.V., UGAROVA, N.N., KERSHENGOL’TS, B.M. Dokl. Akad. Nauk. SSSR (Russ. ed.) 214:701, 1974.Google Scholar
  28. 28.
    BEREZIN, I.V., KERSHENGOL’TS, B.M., UGAROVA, N.N. (in the press).Google Scholar
  29. 29.
    KERSHENGOL’TS, B.M., UGAROVA, N.N., BEREZIN, I.V. Bioorg. Khim. (Russ. ed.) (in the press).Google Scholar
  30. 30.
    POLTORAK, O.M., CHUKHRAI, E.S. “Fisiko-Chimicheskie Osnovy Fermentativnogo Katalisa (Physico-chemical Basis of Enzyme Catalysis), ( Russ. ed.) Vyschaya shkola, Moscow, 1971.Google Scholar
  31. 31.
    WELIKY, N., BROWN, F.S., DALE, E.C. Arch. Biochem. Biophys. 131: 1, 1969.CrossRefGoogle Scholar
  32. 32.
    SCHELL, H.D., TURCU, A., MATEESCU, M.A. Rev. Roum. Biochim. ZO: 233, Z973. Google Scholar
  33. 33.
    PUTNAM, F.W. In “The Proteins” Vol. 1 2nd ed. (Ed. H. Neurath) Academic Press, New York, 1965. p. 154.Google Scholar
  34. 34.
    BEREZIN, I.V., KLIBANOV, A.M., SAMOKHIN, G.P., MARTINEK, K. Meth. EnzymoZ. 44: 558, 1977.CrossRefGoogle Scholar
  35. 35.
    LUMRY, R., R. In “Structure and Stability of Biological Macromolecules” (Eds. S.N. Timasheff and G.D. Fasman) Marcel Dekker, New York, 1969, p. 7.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • I. V. Berezin
    • 1
  1. 1.Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowUSSR

Personalised recommendations