Endotoxin pp 121-126 | Cite as

The Chemical Structure of the Lipopolysaccharide of a Rc-Type Mutant of Proteus mirabilis Lacking 4-Amino-4-Deoxy-L Arabinose and Its Susceptibility towards Polymyxin B

  • J. Radziejewska-Lebrecht
  • U. R. Bhat
  • H. Brade
  • W. Kaca
  • H. Mayer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 256)


The mutant Proteus mirabilis R4 (R4/028) was obtained from the wild-type strain P. mirabilis 028 (F87) by ultraviolet irradiation. Isolation of R4/028 lipopolysaccharide (LPS) and the partial elucidation of the glucose-heptose region as a trisaccharide: β-glucosyl-(1→ 3/4)-L-glycero-α -D-manno-heptosyl-(1 → 4/3)-L-glycero-α-D-manno-heptosyl-7-phosphate has already been described (11). The linkage region between d0clA and heptose, the terminal and side chain-linked d0clA, the substituents of the phosphate groups and the lipid A structure were the aim of this study. In addition, we examined the effect of polymyxin B on P. mirabilis R4/028 mutant, after finding that its LPS is lacking 4-amino-4-deoxy-L-arabinose (Ara4N). The presence of that unusual aminopentose has been suggested by Vaara et al., (15, 16) to be the reason for the resistance of P. mirabilis strains towards the action of polymyxin.


Dodecanoic Acid Capsular Polysaccharide Proteus Mirabilis Core Oligosaccharide Phosphate Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batley, M., Packer, N. H., and Redmond, J. W., 1985, An and lytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota R595. Biochim. Biophys. Acta. 821: 179.Google Scholar
  2. 2.
    Brade, H., Moll, H., and Rietschel, E. Th., 1985, Structural investigation on the inner core region of. lipopolysaccharides from Salmonella minnesota rough mutants. Biomed. Mass Spectrom 12: 602.Google Scholar
  3. 3.
    Brade, L., Kosma, P., Appelmelk, B. J., Paulsen, H., and Brade, H., 1987, Use of synthetic antigens to determine the epitope specificities of monoclonal antibodies against the 3-deoxy-D-manno-L-octulosonate region of bacterial lipopolysaccharide. Infect. Immun. 55: 462.Google Scholar
  4. 4.
    Bhat. U. R., Kontrohr, T., and Mayer. H., 1987, Structure of Shigella sonnei lipid A. FEMS Microbiology Letters 40: 189.Google Scholar
  5. 5.
    Darvill, T. J., McNeil, A. G.. and Albersheim, P., 1983, Determination, by methylation analysis, of the glycosyl-linkage compositions of microgram quantities of complex carbohydrates. Carbohydr. Res. 123: 281.Google Scholar
  6. 6.
    Egan, W., Schneerson, R., Werner, K. E., and Zon, G., 1982. Structural studies and chemistry of bacterial capsular polysaccharides. Investigation of phosphodiester-linked capsular polysaccharides isolated from Haemophilus influenzae types a, b. c and f: Spectroscopic identification and chemical modification of end groups and the nature of base-catalyzed hydrolytic depolymerization. J. Am. Chem. Soc. 104: 2898.Google Scholar
  7. 7.
    Hase, S., and Rietschel, E. Th.. 1976. Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups. Eur. J. Biochem. 63: 101.Google Scholar
  8. 8.
    Jann, K., and Jann, B.. 1984, Structure and biosynthesis of 0-antigens. in: “Handbook of Endotoxins,” E. Th. Rietschel, ed., Elsevier Science Publishers, Amsterdam.Google Scholar
  9. 9.
    Jensen, M., Borowiak, D., Paulsen, H., and Rietschel, E. Th.. 1979, Analysis of permethylated glucosaminyl-glucosaminitol disaccharides by combined gas-liquid chromatography mass spectrometry. Biomed. Mass Spectrom. 6: 559.Google Scholar
  10. 10.
    Leloir, L. F., and Cardini, C. E., 1963. Sugar phosphates, in: “Comprehensive Biochemistry,” Vol. 5, M. Florkin and E. H. Stotz, eds. Elsevier Publishing Company. London, p. 113.Google Scholar
  11. 11.
    Radziejewska-Lebrecht, J., Feige, U., Jensen, M., Kotelko, K., Friebolin, H., and Mayer, H.. 1980. Structural studies on the glucose-heptose region of the Proteus mirabilis R core. Eur. J. Biochem. 107: 31.Google Scholar
  12. 12.
    Rietschel, E. Th., Wollenweber, H. W., Sidorczyk, Z., Zähringer, U., and Luderitz, 0., 1983, Analysis of the primary structure of lipid A, in: “Bacterial Lipopolysaccharides: Structure. Synthesis, Biological Activities,” L. Anderson and F. Unger. eds. Am. Chem. Soc. Washington, D.C.Google Scholar
  13. 13.
    Sidorczyk, Z., Zähringer, U., and Rietschel, E. Th., 1983, Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re mutant. Eur. J. Biochem. 137: 15.Google Scholar
  14. 14.
    Sidorczyk, Z., Kaca, W.. Rietschel, E. Th., and Zähringer, U., 1987, Isolation and structural characterization of an 8–0-(4-amino-4-deoxy-6 -L-arabinopyranosyl)-3-deoxy-D-manno-octulosonic acid disaccharide in the lipopolysaccharide of a Proteus mirabilis deep rough mutant. Eur. J. Biochem. 168: 269.Google Scholar
  15. 15.
    Vaara, M., Vaara, T., Jensen, M., Helander, T., Nurminen, M., Rietschel, E. Th. and Mäkelä, P. H., 1981, Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett. 129: 145.Google Scholar
  16. 16.
    Vaara, M., and Viljanen, P., 1985, Binding of polymyxin B nonapeptide to gram-negative bacteria. Antimicrob. Agents Chemother. 27: 548.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Radziejewska-Lebrecht
    • 1
  • U. R. Bhat
    • 2
  • H. Brade
    • 3
  • W. Kaca
    • 1
  • H. Mayer
    • 2
  1. 1.Institute of MicrobiologyUniversity of LodzLodzPoland
  2. 2.Max-Planck-Institut fur ImmunobiologieFreiburg i.Br.Germany
  3. 3.Forschungsinstitut BorstelBorstelGermany

Personalised recommendations