Endotoxin pp 45-70 | Cite as

Natural Variants of Lipid A

  • H. Mayer
  • J. H. Krauss
  • A. Yokota
  • J. Weckesser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 256)


Recent studies by several groups (46,58,61,63) have revealed that the now “classical” structure of enterobacterial lipid A, the 1,4’-bisphosphorylated β-1,6-linked glucosamine disaccharide with amide- and esterlinked 3-hydroxy fatty acids or 3-acyloxyacyl residues (25a,44), is not universally distributed amongst gram-negative bacteria. It is especially not frequently encountered in families being phylogenetically remote from Enterobacteriaceae, such as the phototrophic bacteria or the thiobacilli. (59,65).


Purple Bacterium Rhodobacter Sphaeroides Phototrophic Bacterium Yersinia Pestis Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahamed, N. M., Mayer, H., Biebl, H. and Weckesser, J., 1982, Lipopolysaccharide with 2,3-diamino-2,3-dideoxyglucose containing lipid A in Rhodopseudomonas sulfovirids, FEMS Microbial., 14: 27–30.Google Scholar
  2. 2.
    Auling, G., Busse, J., Hahn, M., Hennecke, H., Kroppenstedt, R.-M., Probst, A. and Stackebrandt, E., Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxydobacteria, Syst. Appl. Microbiol. l 10: 264–272.Google Scholar
  3. 3.
    Basu, S., Radziejewska-Lebrecht, J. and Mayer, H., 1986, Lipopolysaccharide of Providencia rettgeri, Chemical studies and taxonomical implication, Arch. Microbial. 144: 213–218.Google Scholar
  4. 3a.
    Batley, M., Packer, N. H. and Redmond, J. W., 1985, Analytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota 8595, Biochem. Biophys. Acta. 821: 179–194.Google Scholar
  5. 4.
    Bellmann, W. and Lingens, F., 1985, Structural studies on the core oligosaccharide of Phenylobacterium immobile strain K2 lipopolysaccharide. Chemical cynthesis of 3-hydroxy-5c-dodecenoic acid, Biol. Chem. Hoppe Seyler’s 366: 567–575.Google Scholar
  6. 5.
    Carlson, R.W., 1982, The heterogeneity of Rhizobium lipopolysaccharides, J. Bacteriol. 158: 1012–1017.Google Scholar
  7. 6.
    Carlson, R. W., Shetters, R., Duh, J.-L., Turnbull, E., Hanley, B., Rolfe, B. G., Djordjevvie, M. A., 1987, The isolation and partial characterization of the lipopolysaccharides from several Rhizobium trifolii mutants affected in root hair infection, Plant Physiol. 84: 421–427.Google Scholar
  8. 7.
    Cotter, R. J., Honovich, J., Qureshi, N. and Takayama, K., 1987, Structural determination of lipid A from gram negative bacteria using laser desorption mass spectrometry, Biomed. Environ. Mass Spectrom. 14: 591598.Google Scholar
  9. 8.
    Dalla Venezia, N., Minka, S., Bruneteau, M., Mayer, H. and Michel, G., 1985, Lipopolysaccharides from Yersinia pestis. Studies on lipid A of lipopolysaccharides I and II, Eur. J. Biochem., 151: 399–404.Google Scholar
  10. 9.
    Danner, R. L., Joiner, K. A. and Parrillo, J. E., 1987, Inhibiiton of endotoxin-induced priming of human neutrophils by lipid X and 3-azalipid X, J. Clin. Invest. 80: 605–612.Google Scholar
  11. 10.
    Decker, T., Lohmann-Matthes, M.-L. and Gifford, G. E., 1987, Cell associated tumor necrosis factor (TNF) as a filling mechanism of activated cytotoxic macrophages, J. Immunol. 138: 957–962.Google Scholar
  12. 11.
    Galanos, C., Roppel, J., Weckesser, J., Rietschel, E. Th. and Mayer, H., 1977, Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae, Infect. Immun., 16: 407–412.Google Scholar
  13. 12.
    Gross, M., Mayer, H., Widemann, C. and Rudolph, K., 1988, Comparative analysis of the lipopolysaccharides of a rough and a smooth strain of Pseudomonas syringae pv. phaseolicola, Arch. Microbiol., 149: 342–346.Google Scholar
  14. 13.
    Harvey, D. J., 1982, Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids, Biomed. Mass Spectrom. 9: 33–38.CrossRefGoogle Scholar
  15. 14.
    Hase, S. and Rietschel, E. Th., 1976, Isolation and analysis of the lipid A backbone. Lipid A structure of lipopolysaccharides from various bacterial groups, Eur. J. Biochem. 63: 101–107.Google Scholar
  16. 15.
    Holst, 0., Borowiak, D., Weckesser, J. and Mayer, H., 1983, Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100, Eur. J. Biochem. 137: 325–332.Google Scholar
  17. 16.
    Hurlbert, R. E., Weckesser, J., Mayer, H. and Fromme, F., 1976, Isolation and characterizatin of the lipopolysaccharide of Chromatium vinosum, Eur. J. Biochem., 68: 365–371.Google Scholar
  18. 17.
    Hurlbert, R. E., Weckesser, J., Tharanathan, R. N. and Mayer H., 1978, Isolation and characterization of the lipopolysaccharide of Thiocapsa roseopersicina, Eur. J. Biochem., 90: 241–246.Google Scholar
  19. 18.
    Kasai, N., Arata, S., Mashima, J. I., Akiyama, Y., Tanaka, C., Egawa, K. and Tanaka, S., 1987, Pseudomonas diminuta LPS with a new endotoxic lipid A structure, Biochem. Biophys. Res. Commun. 142: 972–978.Google Scholar
  20. 19.
    Kawahara, K., Brade, H., Rietschel, E. Th. and Zihringer, U., 1987, Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305, Eur. J. Biochem. 163: 489–495.Google Scholar
  21. 20.
    Keilich, G., Roppel, J and Mayer, H., 1976, Characterization of a diaminohexose (2,3-diamino-2,3-dideoxy-D-glucose) from Rhodopseudomonas viridis lipopolysaccharides by circular dichroism, Carbohyd. Res. 5: 129–134.Google Scholar
  22. 21.
    Knirel, A. Y. and Kochetkov, N. K., 1987, 2,3-diamino-2,3-dideoxyuronic and 5,7-diamino-3,5,7,9-tetradeoxynonulosonic acids: new components of bacterial polysaccharides, FEMS Microbiol. Rev. 46: 381–385.Google Scholar
  23. 22.
    Komuro, T. and Galanos, C., 1986, Analysis of Salmonella lipopolysaccharides by sodium deoxycholate polyacrylamide gel electrophoresis, EOS-Rev. Immunol. 6: 147.Google Scholar
  24. 23.
    Kotelko, K., 1986, Proteus mirabilis: taxonomic positon, peculiarities of growth, components of the cell envelope, Curr. Top. Microbial. Immunol. 129: 181.Google Scholar
  25. 24.
    Krauss, J. H., Weckesser, J. and Mayer, H., 1988, Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria, J. System. Bacteriol. 38:.Google Scholar
  26. 25.
    Lehmann, V., Redmond, J., Egan, A. and Minner, I., 1978, The acceptor for polar head groups of the lipid A component of Salmonella lipopolysaccharides, Eur. J. Biochem. 86: 487–496.Google Scholar
  27. 25a.
    Lúderitz, O., Galanos, C., Lehmann, V., Mayer, H., Rietschel, E. Th. and Weckesser, J., 1978, Chemical structure and biological activities of lipid A’s from various bacterial families, Naturwissenschaften 65.: 579–585.Google Scholar
  28. 26.
    Macher, I. and Unger, F.M., 1987, Monosaccharide derivatives related to the lipid A of enterobacteria, 4th European Carbohydrate Symposium, July 12–17, Darmstadt, FRG, B-34.Google Scholar
  29. 27.
    Mayer, H., 1984, Significance of lipopolysaccharide structure for questions of taxonomy and phylogenetical relatedness of gram-negative bacteria, in: “The cell membrane”, E. Harber, ed., Plenum Press, New York, London pp. 71–83.Google Scholar
  30. 28.
    Mayer, H. and Weckesser, J., 1984, Unusual lipid A’s: structures, taxonomical relevance and potential value for endotoxin research, in: “Handbook of endotoxin, Vol. 1, Chemistry of endotoxin, E. Th. Rietschel, ed., Elsevier Science Publishers, Amersterdam, pp. 221–247.Google Scholar
  31. 29.
    Mayer, H., Bock, E. and Weckesser, J., 1983, 2,3-diamino-2,3-dideoxyglucose containing lipid A in the Nitrobacter strain X14 FEMS Microbiol. Lett. 17: 93–96.Google Scholar
  32. 30.
    Mayer, H., Tharanathan, R. N. and Weckesser, J., 1988, Analysis of lipopolysaccharides of Gram-negative bacteria, in: “Methods in Microbiology”, G. Gottschalk, ed., Vol. 18, pp. 157–207, Academic Press, New York.Google Scholar
  33. 31.
    Mayer, H., Krauss, J. H., Puvanesarajah, Stacey, G. and Auling, G., 1988, Lipid A with diaminoglucose in lipopolysaccharides from slow-growing Rhizobiaceae and from Pseudomonas carboxydovorans, Arch. Microbiol. 151: 111–116.Google Scholar
  34. 32.
    Meissner, J., Borowiak, D., Fischer, U. and Weckesser, J., 1988, Lipopolysaccharide with lipid ADAC in the phototropic Ectohiorhodospira vacuolata, Arch. Microbiol. 149: 245–248.Google Scholar
  35. 33.
    Meissner, J., Fischer, U. and Weckesser, J., 1987, The lipopolysaccharide of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum, Arch. Microbiol. 149: 125–129.Google Scholar
  36. 34.
    Meissner, J., Pfennig, N., Krauss, J., Mayer, H. and Weckesser, J., 1988, Lipopolysaccharides of the Chromatiaceae species Thiocystis violacea, Thiocapsa pfennigii, and Chromatium tepidum, J. Bacteriol. 170: 3267–3272.Google Scholar
  37. 35.
    Meyer zu Reckendorf, W., 1964, Die Synthesen der 2,3-Diamino-2,3-didesoxy-D-allose, der 2,3-Diamino-2,3-didesoxy-a-D-glucose und der 2,6Diamino-2,6-dideoxy-u-D-allose, Chem. Ber. 97: 1175–1285.Google Scholar
  38. 36.
    Moreno, E. and Mayer, H., 1988, Brucella Lipids, in: “Brucella”, CNC (London). (in press)Google Scholar
  39. 37.
    Moreno, E., Borowiak, D. and Mayer, H., 1987. Brucella lipopolysaccharides and polysaccharides, Ann. Inst. Pasteur Microbiol. 138: 102–105.PubMedCrossRefGoogle Scholar
  40. 38.
    Ohno, K., Nishiyama, H. and Nagase, H., 1979, A mild methylation of alcohols with diazomethane catalyzed by silica gel, Tetrahedron Lett. 45: 4405–4406.Google Scholar
  41. 39.
    Omar, A. S., Flammann, H. T., Borowiak, D. and Weckesser, J., 1983, Lipopolysaccharides of two strains of the phototrophic bacterium Rhodopseudomonas capsulate, Arch. Microbiol. 134: 212–216.Google Scholar
  42. 40.
    Radziejewska-Lebrecht, Feige, U., Mayer H. and Weckesser, J., 1981, Structure of the heptose region of lipopolysaccharides from Rhodospirillum tenue, J. Bacteriol. 145: 138–144.Google Scholar
  43. 41.
    Raetz, C. R. H., 1987, Biosynthesis and pharmacological properties of Escherichia coli lipid A, in: “Bacterial outer membranes as model systems”, M. Inouye, ed., pp. 229–245, John Wiley and Sons, Inc.Google Scholar
  44. 42.
    Raetz, C. R. H., 1984, Escherichia coli mutants that allow elucidation of the precursors and biosynthesis of lipid A, in: “Handbook of Endotoxin”, E. Th. Rietschel, ed.,pp. 248–268, Elsevier Science Publishers, Amsterdam.Google Scholar
  45. 43.
    Rietschel, E. Th. and Luderitz, 0., 1980, Struktur von Lipopolysaccharid und Taxonomic gram-negativer Bakterien. Forum Mikrobiol. 3: 12–20.Google Scholar
  46. 44.
    Rietschel, E. Th., Wollenweber, H. W., Brade, H., Zahringer, U., Lindner, B., Seydel, U., Bradaczek, H., Barnickel, G., Labischinski, H. and Griesbrecht, P.. 1984, Structure and conformation of the lipid A component of lipopolysaccharides, in: “Handbook of Endotoxin”, Vol. 1. Chemistry of Endotoxin, E. Th. Rietschel, ed. pp. 187–200, Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  47. 45.
    Rietschel, E. Th., Galanos, C.. Lüderitz, 0. and Westphal, 0., 1982, The chemistry and biology of lipopolysaccharides and their lipid A component, in: “Immunopharmacology and the regulation of leukocyte function”, Dr-R. Webb, ed., Marcel Dekker, Inc. New York, Basel, pp. 183229.Google Scholar
  48. 46.
    Roppel, J., Mayer, H. and Weckesser, J., 1975, Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris, Carbohydr. Res. 40: 31–40.Google Scholar
  49. 47.
    Russa, R., Luderitz, 0. and Rietschel, E. Th., 1985, Structural analyses of lipid A from lipopolysaccharides of nodulating and nonnodulating Rhizobiium trifolii, Archiv. Microbiol. 141: 284–289.Google Scholar
  50. 48.
    Salimath, P. V., Weckesser, J., Strittmatter, W. and Mayer, H., 1983, Structural studies on the nontoxic lipid A from Rhodopseudomonas sphaeroides ATCC 17023, Eur. J. Biochem. 136: 195–200.Google Scholar
  51. 49.
    Schinler, M. and Osborn. M. J., 1979, Interaction of divalent cations polymyxin B with lipopolysaccharide, Biochem. 18: 4425–4430.CrossRefGoogle Scholar
  52. 50.
    Seydel, U., Lindner, B., Zahringer, U., Rietschel, E. Th., Kusumoto, S. and Shiba, S., 1984, Laser desorption mass spectrometry of synthetic lipid A like compounds, Biomed. Mass Spectrom, 11: 132–141.Google Scholar
  53. 51.
    Siensky, M., 1974, Homeoviscous adaptation - a hoeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Nat. Acad. Sci. (Wash.) 71: 522–525.Google Scholar
  54. 52.
    Stackebrandt, E., 1986, Das hierarchische System der Eubakterien: Problem und Losungsansatze, Form Mikrobiologie 9: 255–260.Google Scholar
  55. 53.
    Strittmatter, W., Weckesser, J., Salimath, P. V. and Galanos, C., 1983, Nontoxic lipopolysaccharides from Rhodopseudomonas sphaeroides ATCC 17023, J. Bacteriol. 153–158.Google Scholar
  56. 54.
    Tegtmeyer, B., Weckesser, J., Mayer, H. and Imhoff, J. F., 1985, Chemical composition of the lipopolysaccharides of Rhodobacter sulfidophilus, Rhodopseudomonas acidophila and Rhodopseudomonas blastica, Arch. Microbiol. 143: 32–36.Google Scholar
  57. 55.
    Tharanathan, R. N., Salimath, P. V., Weckesser, J. and Mayer, H., 1985. The structure of lipid A from the lipopolysaccharide of Rhodopseudomonas gelatinosa 29/1, Arch. Microbiol. 141: 279–283.Google Scholar
  58. 56.
    Tharanathan, R. N., Weckesser, J. and Mayer, H., 1978, Structural studies on the D-arabinose-containing lipid A from Rhodospirillum tenue 2761, Eur. J. Biochem. 84: 385–394.Google Scholar
  59. 57.
    Wartenberg, K., Knapp, W., Ahamed, N. M., Widemann, C. and Mayer, H., 1983, Temperature-dependent changes in the sugar and fatty acid composition of lipopolysaccharides from Yersinia enterocolitica strains, Zbl. Bakt. Hyg., I., Abt. Orig. A253: 523–530.Google Scholar
  60. 58.
    Weckesser, J. and Mayer, H., 1987, Lipopolysaccharides of phototrophic bacteria, a contribution to phylogeny and endotoxin research, Forum Mikrobiologie, 108: 242–248.Google Scholar
  61. 59.
    Weckesser, J. and Mayer, H, 1987, Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria, FEMS Microbiol. Rev.54: 143–154.Google Scholar
  62. 60.
    Weckesser, J., Drews, G., and Mayer, H., 1979, Lipopolysaccharides of photosynthetic prokaryotes, Ann. Rev. Microbiol. 33: 215–239.Google Scholar
  63. 61.
    Weisshaar, R. and Lingens, F., 1983, The lipopolysaccharide of a chloridazon-degrading bacterium, Eur. J. Biochem. 137: 155–161.Google Scholar
  64. 62.
    Westphal, O., Luderitz, O., Galanos, C., Mayer, H. and Rietschel, E. Th., 1985, The story of bacterial endotoxin, Adv. Immunopharmacol. 1334.Google Scholar
  65. 63.
    Wilkinson, S. G. and Taylor, D. P., 1978, Occurrence of 2,3-diamino-2, 3-dideoxy-D-glucose in lipid A from lipopolysaccharide of Pseudomonas diminuta, J. Gen. Microbiol. 109: 367–370.Google Scholar
  66. 64.
    Wilkinson, B. J., Hindahl, M. S., Galbraith, L. and Wilkinson, S. G., 1986, Lipopolysaccharide of Paracoccus denitrificans ATCC 13543, FEMS Microbiol. Lett. 37: 63–67.Google Scholar
  67. 65.
    Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.Google Scholar
  68. 66.
    Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupta, R., Nealson, K. H. and Fox, G. E., 1984, The phylogeny of purple bacteria: the alpha subdivision, Syst. Appl. Microbiol. 5: 315–326.Google Scholar
  69. 67.
    Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupta, R., Nealson, K. H. and Fox, G. E., 1985, The phylogeny of purple bacteria: the gamma subdivision, Syst. Appl. Microbiol. 6: 25–33.Google Scholar
  70. 68.
    Wollenweber, H. W., Schlecht, S., Lúderitz, 0. and Rietschel, E., 1983, Fatty acid in lipopolysaccharides of Salmonella species grown at low temperatures, Eur. J. Biochem. 130: 167–171.Google Scholar
  71. 69.
    Wollenweber, H. W., Seydel, U., Lindner, B., Luderitz, 0. and Rietschel, E. Th., 1984, Nature and location of amide-bound (R)3-acyloxyacyl groups in lipid A of lipopolysaccharides from various Gram-negative bacteria, Eur. J. Biochem. 145: 265–272.Google Scholar
  72. 70.
    Yokota, A., Rodriguez, M., Yamada, Y., Imai, K., Borowiak, D. and Mayer, H., 1987a, Lipopolysaccharides of Thiobacillus species containing lipid A with 2,3-diamino-2,3-dideoxyglucose, Arch. Microbiol. 149: 106–111.Google Scholar
  73. 71.
    Yokota, A., Schlecht and Mayer, H., 1987b, Lipopolysaccharides of chemolithotrophic bacteria Thiobacillus versutus and a related Thiobacillus species, FEMS Microbiol. Lett. 44: 197–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Mayer
    • 1
  • J. H. Krauss
    • 1
  • A. Yokota
    • 1
  • J. Weckesser
    • 2
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburg i.Br.Germany
  2. 2.Institut für Biologie IIMikrobiologie, der UniversitätFreiburg i.Br.Germany

Personalised recommendations