Skip to main content

Interaction of Mg2+ and Ca2+ in In Vitro Hexagonal Assembly of R-Form Lipopolysaccharides

  • Chapter
Book cover Endotoxin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 256))

  • 293 Accesses

Summary

The R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (03-:K1-), from which cationic material had been removed by electro­dialysis, formed an orderly hexagonal lattice structure when suspended in 50 mM Tris buffer at pH 8.5 containing MgCl2. The center-to-center distance (lattice constant) of the hexagonal lattice structure depended upon the concentration of MgC12 and reached the shortest value (15 nm) at 10 mM. In contrast, CaC12 could not produce the orderly hexagonal lattice structure but produced an irregular network structure with a center to center distance of 19 to 20 nm. When the LPS was suspended in Tris buffer containing 10 mM MgC12 mixed with 1 or 10 mM CaC12, formation of the orderly hexagonal lattice structure of the magnesium salt type was inhibited and the LPS showed the structure of the calcium salt type. When 1 or 10 mM CaC12 was mixed with 10 mM MgC12, the binding of Mg to the LPS was significantly inhibited compared with when 10 mM MgCl2 was added alone. On the contrary, when 10 mM CaC12 was mixed with 10 mM MgC12, the binding of Ca to the LPS was enhanced compared with when 10 mM CaC12 was added alone. It was therefore concluded that the inhibition of formation of the hexagonal lattice structure of the magnesium salt type by addition of CaC12 is due to the inhibition of the binding of Mg to the LPS. Such a competitive interaction of Mg2+ and Ca2+ was also observed with the electrodialyzed LPS of Escherichia coli K-12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coughlin, R. T., Tonsager, S., and McGroarty, E. J., 1981, Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli. Biochemistry 22: 2002.

    Google Scholar 

  2. Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S., and Kuno, T., 1985, Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella sp. J. Bacteriol. 162: 1142.

    PubMed  CAS  Google Scholar 

  3. Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S., and Kuno, T., 1985, Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella: relationship between lattice formation and uniform salt forms. Microbiol. Immunol. 29: 1059.

    Google Scholar 

  4. Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S., and Kuno, T., 1986, Stability of the hexagonal lattice structure formed by an R-form lipopolysaccharide of Klebsiella: decrease in the stability by electrodialysis and recovery by addition of the magnesium. Microbiol. Immunol. 30: 13.

    Google Scholar 

  5. Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S., In vitro hexagonal assembly of lipopolysaccharide K-12. Microbiol. Immunol. 30: 1105.

    Google Scholar 

  6. Kato, N., Ohta, M., Kido, N., Ito, H., and Naito, hexagol assembly of R-form lipopolysaccharides: the Mg -mediated hexagonal assembly. Microbiol. Immunol. 32: 151.

    Google Scholar 

  7. Kato, N., Ohta, M., Kido, N., Ito, H., and Naito, S., 1988, Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella: effect of various divalent cations on the lattice formation. Microbiol. Immunol. 32: 481.

    Google Scholar 

  8. Mayer, H., Rapin, A. M. C., Schmidt, G., and Boman, H. G., 1976, Immunochemical studies on lipopolysaccharides from wild-type and mutants of Escherichia coli K-12. Eur. J. Biochem. 66: 357.

    Google Scholar 

  9. Ohta, M., Kido, N., Hasegawa, T., Ito, H., Fujii, Y., Arakawa, Y., Komatsu, T., and Kato, N., 1987, Contribution of the mannan 0 side-chain to the adjuvant action of lipopolysaccharides. Immunology 60: 503.

    PubMed  CAS  Google Scholar 

  10. Ohta, M., Mori, M., Hasegawa, T., Nagse, F., Nakashima, I.. Naito, S., and Kato, N., 1981, Further studies of the polysaccharide of Klebsiella pneumoniae possessing strong adjuvanticity. I. Production of the adjuvant polysaccharide by noncapsulated mutant. Microbiol. Immunol. 25: 939.

    Google Scholar 

  11. Prehm, P., Schmidt, G., Jann, B., and Jann, K., 1976, The cell-wall lipopolysaccharide of Escherichia coli K-12. Structure and acceptor site for 0-antigen and other substituents. Eur. J. Biochem. 70: 171.

    Google Scholar 

  12. Prehm, P., Stirm, B., Jann, B., Jann, K., and Boman, H. G., 1976, Cell-wall lipopolysaccharides of ampicillin-resistant mutants of Escherichia coli K-12. Eur. J. Biochem. 66: 369.

    Google Scholar 

  13. Tamaki, S., Sato, T., and Mitsuhashi, S., 1971, Role of lipopolysaccharides in antibiotic resistance and bacteriophage absorption of Escherichia coli K-12. J. Bacteriol. 105: 968.

    PubMed  CAS  Google Scholar 

  14. Westphal, O., and Jann, K., 1965, Bacterial lipopolysaccharides - extraction with phenol water and further application of the procedure, in: “Methods in Carbohydrate Chemistry, Vol. 5”, R. L. Whistler, ed., Academic Press, New York, p. 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S. (1990). Interaction of Mg2+ and Ca2+ in In Vitro Hexagonal Assembly of R-Form Lipopolysaccharides. In: Friedman, H., Klein, T.W., Nakano, M., Nowotny, A. (eds) Endotoxin. Advances in Experimental Medicine and Biology, vol 256. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5140-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5140-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5142-0

  • Online ISBN: 978-1-4757-5140-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics