Skip to main content

Structural Requirements of Lipid a for Endotoxicity and Other Biological Activities—An Overview

  • Chapter
Endotoxin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 256))

Abstract

Lipopolysaccharide (LPS), a major constituent of outer membranes of gram-negative bacteria, exhibits a wide variety of bioactivities (Table 1) (61). In 1954 Westphal and Lüderitz proposed that the lipid moiety of LPS is responsible for most of endotoxicities, and designated it as lipid A (Fig 1) (60). However, this extremely important discovery was neither adequately nor unanimously accepted by endotoxin investigators at that time. One of the main reasons for this controversy is that the high hydrophobicity of the lipid A molecule made its manipulation as a test material for bioactivities difficult. Another reason is concerned with inherent microheterogeneity in fine structures even among preparations derived from the same bacterial

This overview is based on our recent review paper in CRC Critical Rev. Microbiol. (54).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arata, S., Mashimo, J., Kasai, N., Okuda, K., Aihara, Y., Hasegawa, A., and Kiso, M., 1987, Analyses of antigenic reactivity of synthetic monosaccharide lipid A analogues with monoclonal antibodies. FEMS Microbiol. Lett. 44: 231.

    Google Scholar 

  2. Arata, S., Mashimo, J., Kasai, N., Okuda, K., Aihara, Y., Kotani, S., Takada, H., Shiba, T., Kusumoto, S., Shimamoto, T., Kusunose, N., 1988, Characterization of monoclonal lipid A antibodies with synthetic lipid A analogues. FEMS Microbiol. Lett. 49: 479.

    Google Scholar 

  3. Brade, L., Rietschel, E. T., Kusumoto, S., Shiba, T., and Brade, H.. 1986, Immunogenicity and antigenicity of synthetic Escherichia coli lipid A. Infect. Immun. 51: 110.

    Google Scholar 

  4. Brade, L., Brandenburg, K., Kuhn, H.-M., Kusumoto, S., Macher, I., Rietschel, E. T., and Brade, H., 1987, The immunogenicity and antigeni-city of lipid A are influenced by its physicochemical state and environment. Infect. Immun. 55: 2636.

    Google Scholar 

  5. Charon, D., Diolez, C., Mondange, M., Sarfati, S. R., Szabó, L., Szabó, P., and Trigalo, F., 1983, Synthetic studies on structural elements of the hydrophobic region present in bacterial endotoxins, in: “Bacterial Lipopolysaccharides: Structure, Synthesis, and Biological Activities”, L. Anderson and F. M. Unger, ed., American Chemical Society, Washington DC, p. 301.

    Google Scholar 

  6. Charon, D., Chaby, R., Malinvaud, A.. Mondange, M., and Szabó, L., 1985, Chemical synthesis and immunological activities of glycolipids structurally related to lipid A. Biochemistry 24: 2736.

    Google Scholar 

  7. Fujishima, Y., Kigawa, K., Ogawa, Y., Kiso, M., and Hasegawa, A., 1987, New synthetic immunomodulators combining a 4–0-phosphono-D-glucosamine derivative related to bacterial lipid A with 1-deoxy-N-acetylmuramoyl dipeptide analogs. Carbohyd. Res. 167: 317.

    Google Scholar 

  8. Galanos, C., and Luderitz, 0., 1975, Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur. J. Biochem. 54: 603.

    Google Scholar 

  9. Galanos, C., Freudenberg, M. A., and Reutter, W., 1979, Galactosamineinduced sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. U.S.A. 76: 5939.

    Google Scholar 

  10. Galanos, C., Lehmann, V., Luderitz, 0., Rietschel, E. T., Westphal, 0., Brade, H., Brade, L., Freudenberg, M. A., Hansen-Hagge, T., Luderitz, T., McKenzie, G., Schade, U., Strittmatter, W., Tanamoto, K., Zâhringer, U., Imoto, M., Yoshimura, H., Yamamoto, M., Shimamoto, T., Kusumoto, S., and Shiba, T., 1984, Endotoxic properties of chemically synthesized lipid A part structures. Comparison of synthetic lipid A precursor and synthetic analogues with biosynthetic lipid A precursor and free lipid A. Eur. J. Biochem. 140: 1.

    Google Scholar 

  11. Galanos, C., Hansen-Hagge, T., Lehmann, V., and Luderitz, 0., 1985, Comparison of the capacity of two lipid A precursor molecules to express the local Shwartzman phenomenon. Infect. Immun. 48: 355.

    Google Scholar 

  12. Galanos, C., Luderitz, 0., Rietschel, E. T., Westphal, 0., Brade, H., Brade, L., Freudenberg, M., Schade, U., Imoto, M., Yoshimura, H., Kusumoto, S., and Shiba, T., 1985, Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur. J. Biochem. 148: 1.

    CAS  Google Scholar 

  13. Galanos, C., Luderitz, 0., Freudenberg, M., Brade, L., Schade, U., Rietschel, E. T., Kusumoto, S., and Shiba, T., 1986, Biological activity of synthetic hepta acyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur. J. Biochem. 160: 55.

    CAS  Google Scholar 

  14. Hall, C. L., and Munford, R. S., 1983, Enzymatic deacylation of the lipid A moiety of Salmonella typhimurium lipopolysaccharides by human neutrophils. Proc. Natl. Acad. Sci. U.S.A. 80: 6671.

    Google Scholar 

  15. Homma, J. Y., Matsuura, M., Kanegasaki, S., Kawakubo, Y., Kojima, Y., Shibukawa, N., Kumazawa, Y., Yamamoto, A., Tanamoto, K., Yasuda, T., Imoto, M., Yoshimura, H., Kusumoto, S., and Shiba, T., 1985, Structural requirements of lipid A responsible for the functions: a study with chemically synthesized lipid A and its analogues. J. Biochem. Tokyo 98: 395.

    Google Scholar 

  16. Imoto, M., Yoshimura, H., Yamamoto, M., Shimamoto, T., Kusumoto, S., and Shiba, T., 1984, Chemical synthesis of phosphorylated tetraacyl disaccharide corresponding to a biosynthetic precursor of lipid A. Tetrahedron Lett. 25: 2667.

    CAS  Google Scholar 

  17. Imoto, M., Yoshimura, H., Sakaguchi, N., Kusumoto, S., and Shiba, T., 1985, Total synthesis of Escherichia coli lipid A. Tetrahedron Lett. 26: 1545.

    Article  CAS  Google Scholar 

  18. Imoto, M., Yoshimura, H., Shimamoto, T., Sakaguchi, N., Kusumoto, S., and Shiba, T., 1987, Total synthesis of Escherichia coli lipid A, the endotoxicity active principle of cell-surface lipopolysaccharide. Bull. Chem. Soc. Jpn. 60: 2205.

    Google Scholar 

  19. Imoto, M., Yoshimura, H., Yamamoto, M., Shimamoto, T., Kusumoto, S., and Shiba, T., 1987, Chemical synthesis of a biosynthetic precursor of lipid A with a phosphorylated tetraacetyl disaccharide structure. Bull. Chem. Soc. Jpn. 60: 2197.

    Google Scholar 

  20. Iwanga, S., Morita, T., Miyata, T., and Nakamura, T., 1985, Hemolymph coagulation system in Limulus, in: “Microbiology-1985”, L. Schlessinger, ed., American Society for Microbiology, Washington DC, p. 29.

    Google Scholar 

  21. Kanegasaki, S., Kojima, Y., Matsuura, M., Homma, J. Y., Yamamoto, A., Kumazawa, Y., Tanamoto, K., Yasuda, T., Tsumita, T., Imoto, M., Yoshimura, H., Yamamoto, M., Shimamoto, T., Kusumoto, S., and Shiba, T., 1984, Biological activities of analogues of lipid A based chemically on the revised structural model. Comparison of mediator-inducing. immunomodulating and endotoxic activities. Eur. J. Biochem. 143: 237.

    Google Scholar 

  22. Kanegasaki, S., Tanamoto, K., Yasuda, T., Homma, J. Y., Matsuura, M.. Nakatsuka, M., Kumazawa, Y., Yamamoto, A.. Shiba, T., Kusumoto, S., Imoto, M., Yoshimura, H., and Shimamoto, T., 1986, Structure-activity relationship of lipid A: Comparison of biological activities of natural and synthetic lipid A’s with different fatty acid compositions. J. Biochem. Tokyo 99: 1203.

    CAS  Google Scholar 

  23. Kasai, N., Arata, S., Mashimo, J., Okuda, K., Aihara, Y., Kotani, S., Takada, H., Shiba, T.. and Kusumoto, S., 1985, In vitro antigenic reactivity of synthetic lipid A analogues as determined by monoclonal and conventional antibodies. Biochem. Biophys. Res. Commun. 128: 607.

    Google Scholar 

  24. Kasai. N., Arata, S., Mashimo, J., Okuda, K., Aihara, Y.. Kotani, S., Takada, H., Shiba, T., Kusumoto, S., Imoto, M., Yoshimura, H., and Shimamoto, T., 1986. Synthetic Salmonella-type lipid A antigen with high serological specificity. Infect. Immun. 51: 43.

    Google Scholar 

  25. Kiso, M., and Hasegawa, A., 1983, Synthetic studies on the lipid A component of bacterial lipopolysaccharide, in: “Bacterial Lipopolysaccharides: Structure. Synthesis, and Biological Activities”, L. Anderson and F. M. Unger, ed., American Chemical Society, Washington DC, p. 277.

    Google Scholar 

  26. Kiso, M., Ishida, H., and Hasegawa, A., 1984, Synthesis of biologically active, novel monosaccharide analogs of lipid A. Agr. Biol. Chem. 48: 251.

    CAS  Google Scholar 

  27. Kiso, M., Ogawa, Y., Tanaka. S., Ishida, H., and Hasegawa, A., 1986, Synthesis of 1,5-anhydro-2-deoxy-4–0-phosphono-3–0-tetradecanoyl-2[(3R)- and (3S)-3-tetradecanoyloxytetradecanamido]-D-glucitol (GLA-40) related to bacterial lipid A. J. Carbohyd. Chem. 5: 621.

    CAS  Google Scholar 

  28. Kiso, M., Tanaka, S., Tanahashi, M., Fujishima, Y.. Ogawa. Y., and Hasegawa, A., 1986, Synthesis of 2-deoxy-4–0-phosphono-3–0-tetradecanoyl-2-[(3R)- and (3S)-3-tetradecanoyloxytetradecanamido]-D-glucose: A diastereoisomeric pair of 4–0-phosphono-D-glucosamine derivatives (GLA-27) related to bacterial lipid A. Carbohyd. Res. 148: 221.

    Google Scholar 

  29. Kiso, M., Tanaka, S., Fujita, M., Fujishima, Y.. Ogawa, Y., Ishida, H.. and Hasegawa. A., 1987, Synthesis of the optically active 4–0-phosphonoD-glucosamine derivatives related to the nonreducing-sugar subunit of bacterial lipid A. Carbohyd. Res. 162: 127.

    CAS  Google Scholar 

  30. Kotani, S., Takada, H., Tsujimoto, M., Ogawa, T., Harada, K., Mori, Y.. Kawasaki, A.. Tanaka, A., Nagao, S.. Tanaka, S., Shiba, T., Kusumoto, S., Imoto. M.. Yoshimura. H., Yamamoto, M., and Shimamoto, T., 1984, Immunobiologically active lipid A analogs synthesized according to a revised structural model of natural lipid A. Infect. Immun. 45: 293.

    CAS  Google Scholar 

  31. Kotani, S., Takada, H., Tsujimoto, M., Ogawa, T., Takahashi, I., Ikeda, T., Otsuka, K., Shimauchi, H., Kasai, N., Mashimo, J., Nagao, S., Tanaka, A., Tanaka, S., Harada, K., Nagaki, K.. Kitamura, H., Shiba, T.. Kusumoto, S.. Imoto, M., and Yoshimura, H., 1985. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli Re-mutant. Infect. Immun. 49: 225

    CAS  Google Scholar 

  32. Kotani, S., Takada, H., Takahashi, I., Ogawa, T., Tsujimoto, M., Shimauchi, H., Ikeda, T., Okammura, H., Tamura, T., Harada, K., Tanaka, S., Shiba, T., Kusumoto, S., and Shimamoto. T., 1986, Immunobiological activities of synthetic lipid A analogs with low endotoxicity. Infect. Immun. 54: 673.

    Google Scholar 

  33. Kotani, S., Takada, H., Takahashi, I., Tsujimoto, M., Ogawa, T., Ikeda, T., Harada, K., Okammura, H., Tamura, T., Tanaka, S., Shiba, T., Kusumoto, S., Imoto, M., Yoshimura, H., and Kasai, N., 1986, Low endotoxic activities of synthetic Salmonella-type lipid A with an additional acyloxyacyl group on the 2-amido group of ß(1–6)glucosamine disaccharide 1,4’-bisphosphate. Infect. Immun. 52: 872.

    Google Scholar 

  34. Krueger, J. M., Kubillus, S., Shoham, S., and Davenne, D., 1986, Enhancement of slow-wave sleep by endotoxin and lipid A. Am. J. Physiol. 251: R591.

    Google Scholar 

  35. Kumazawa, Y., Matsuura, M., Homma, J. Y., Nakatsuru, Y., Kiso, M., and Hasegawa, A., 1985, B cell activation and adjuvant activities of chemically synthesized analogues of the nonreducing sugar moiety of lipid A. Eur. J. Immunol. 15: 199.

    Google Scholar 

  36. Kumazawa, Y., Matsuura, M., Maruyama, T., Homma, J. Y., Kiso, M., and Hasegawa, A., 1986, Structural requirements for inducing in vitro B lymphocyte activation by chemically synthesized derivatives related to the nonreducing D-glucosamine subunit of lipid A. Eur. J. Immunol. 16: 1099.

    Google Scholar 

  37. Kumazawa, Y., Nakatsuka, M., Takimoto, H., Furuya, T., Nagumo, T., Yamamoto, A., Homma, J. Y., Inada, K., Yoshida, M., Kiso, M., and Hasegawa, A., 1988, Importance of fatty acid substituents of chemically synthesized lipid A-subunit analogs in the expression of immunopharmacological activity. Infect. Immun. 56: 149.

    Google Scholar 

  38. Kusumoto, S., Yamamoto, M., and Shiba, T., 1984, Chemical syntheses of lipid X and lipid Y, acyl glucosamine 1-phosphates isolated from Escherichia coli mutants. Tetrahedron Lett. 25: 3727.

    CAS  Google Scholar 

  39. Loppnow, E., Brade, L., Brade, H., Rietschel, E. T., Kusumoto, S., Shiba, T., and Flad, H. D., 1986, Induction of human interleukin 1 by bacterial and synthetic lipid A. Eur. J. Immunology. 16: 1263.

    Google Scholar 

  40. Matsuura, M., Kojima, Y., Homma, J. Y., Kubota, Y., Yamamoto, A., Kiso, M., and Hasegawa, A., 1984, Biological activities of chemically synthesized analogues of the nonreducing sugar moiety of lipid A. FEBS Lett. 167: 226.

    Google Scholar 

  41. Matsuura, M., Yamamoto, A., Kojima, Y., Homma, J. Y., Kiso, M., and Hasegawa, A., 1985, Biological activities of chemically synthesized partial structure analogues of lipid A. J. Biochem. Tokyo 98: 1229.

    Google Scholar 

  42. Munford, R. S., and Hall, C. L., 1986, Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 234: 203.

    CAS  Google Scholar 

  43. Nakamoto, S., and Achiwa, K., 1987, Lipid A and related compounds. XVI. Synthesis of biologically active tetraacetyl-3-deoxy-D-manno-2octulosonic acid (KD0)-(a 2 +6)-D-glucosamine-4-phosphates, novel analogs of the nonreducing sugar moiety of lipid A. Chem. Pharm. Bull. 35: 4537.

    Google Scholar 

  44. Obayashi, T., Tamura, H., Tanaka, S., Ohki, M., Takahashi, S., Arai, M., Masuda, M., and Kawai, T., 1985, A new chromogenic endotoxin-specific assay using recombined limulus coagulation enzymes and its clinical applications. Clinica Chim. Acta. 149: 55.

    Google Scholar 

  45. Ogawa, T., Kotani, S., Kusumoto, S.. and Shiba, T., 1987, Analgesic action of endotoxic lipopolysaccharides, bacterial and synthetic lipid A’s and their low toxic analogs in decreasing acetic acid-induced abdominal-writhing response in mice, in: “International Symposium on Pyrogen”, Z. Haijun, ed., Chinese Pharmaceutical Association. p. 63.

    Google Scholar 

  46. Ogawa, Y., Fujishima, Y., Konishi, I., Kiso, M., and Hasegawa, A.. 1987, The chemical modification of the C-1 substituent of a 4–0-phosphono-Dglucosamine derivative (GLA-27) related to bacterial lipid A. J. Carbohyd. Chem. 6: 399.

    Google Scholar 

  47. Pohlman, T. H., Munford, R. S., and Harlan, J. M., 1987, Deacylated lipopolysaccharide inhibits neutrophil adherence to endothelium induced by lipopolysaccharide in vitro. J. Exp. Med. 165: 1393.

    Google Scholar 

  48. Qureshi, N., Takayama, K., and Ribi, E., 1982, Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimuriva. J. Biol. Chem. 257: 11808.

    Google Scholar 

  49. Ribi, E., Amano, K., Cantrell, J., Shwartzman, S., Parker, R., and Takayama, K., 1982, Preparation and antitumor activity of nontoxic lipid A. Cancer Immunol. Immunother. 12: 91.

    Google Scholar 

  50. Rietschel, E. T., Brade, L., Schade, U., Galanos, C., Freudenberg, M., Luderitz, 0., Kusumoto, S., and Shiba, T., 1987, Endotoxic properties of synthetic pentaacyl lipid A precursor Ib and a structural isomer. Eur. J. Biochem. 169: 27.

    CAS  Google Scholar 

  51. Shimizu, T., Akiyama, S., Masuzawa, T., Yanagihara, Y., Nakamoto, S., and Achiwa, K., 1987, Biological activities of chemically synthesized 2keto-3-deoxyoctonicacid-(a2 + 6)-D-glucosamine analogs of lipid A. Infect. Immun. 55: 2287.

    Google Scholar 

  52. Shimizu, T., Akiyama, S., Masuzawa, T., Yanagihara, Y., Nakamoto, S.. and Achiwa, K., 1987, Antitumor activity and lethal toxicity of chemically synthesized tetraacetyl-2-keto-3-deoxyoctonic acid-(a2+6)-Dglucosamine analogues of lipid A. Chem. Pharm. Bull. 35: 873.

    Google Scholar 

  53. Takada, H., Kotani, S., Tsujimoto, M., Ogawa, T., Takahashi, I., Harada, K., Katukawa, C., Tanaka, S., Shiba, T., Kusumoto, S., Imoto, M., Yoshimura, H., Yamamoto, M., and Shimamoto, T., 1985, Immunopharmacological activities of a synthetic counterpart of a biosynthetic lipid A precursor molecule and of its analogs. Infect. Immun. 48: 219.

    Google Scholar 

  54. Takada, H., Kotani, S., Tanaka, S., Ogawa, T., Takahashi, I., Tsujimoto, M., Komuro, T., Shiba, T., Kusumoto, S., Kusunose, N., Hasegawa, A., and Kiso, M., 1988. Structural requirements of lipid A species in activation of clotting enzymes from horseshoe crab, and the human complement cascade. Eur. J. Biochem. 175: 573.

    Google Scholar 

  55. Takada, H., and Kotani, S., 1989, Structural requirements of lipid A for endotoxicity and other biological activities. CRC Critic. Rev. Microbiol. (in press).

    Google Scholar 

  56. Takahashi, I., Kotani, S., Takada, H., Tsujimoto, M., Ogawa, T., Shiba, T., Kusumoto, S., Yamamoto, M., Hasegawa, A., Kiso, M., Nishijima, M., Amano, F., Akamatsu, Y., Harada, K., Tanaka, S., Okamura, H. and Tamura, T., 1987, Requirement of a properly acylated 13(1–6)-D-glucosamine disaccharide bisphosphate structure for efficient manifestation of full endotoxic and associated bioactivities of lipid A. Infect. Immun. 55: 57.

    Google Scholar 

  57. Takahashi, I., Kotani, S., Takada, H., Shiba, T. and Kusumoto, S., 1988, Structural requirements of endotoxic lipopolysaccharides and bacterial cell walls in induction of interleukin-1. Blood Purification 6: 188.

    CAS  Google Scholar 

  58. Takayama, K., Qureshi, N., Raetz, C. R. H., Ribi, E., Peterson, J., Cantrell, J. L., Pearson, F. C., Wiggins, J., and Johnson, A. G., 1984, Influence of fine structure of lipid A on Limulus amoebocyte lysate clotting and toxic activities. Infect. Immun. 45: 350.

    Google Scholar 

  59. Takayama, K., Qureshi, N., Ribi, E., and Cantrell, J. L., 1984, Separation and characterization of toxic and nontoxic forms of lipid A. Rev. Infect. Dis. 6: 439.

    Google Scholar 

  60. Ukei, S., Iida, J., Shiba, T., Kusumoto, S., and Azuma, I., 1986, Adjuvant and antitumour activities of synthetic lipid A D analogues. Vaccine 4: 21.

    CAS  Google Scholar 

  61. Westphal, O., and Luderitz, 0., 1954, Chemische Erforschung von Lipopolysacchariden gramnegativer Bakaterien. Angew. Chem. 66: 407.

    Google Scholar 

  62. Westphal, O., Luderitz, O., Galanos, C., Mayer, H., and Rietschel, E. T., 1986, The story of bacterial endotoxin. Adv. Immunopharmacol. 3: 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kotani, S., Takada, H. (1990). Structural Requirements of Lipid a for Endotoxicity and Other Biological Activities—An Overview. In: Friedman, H., Klein, T.W., Nakano, M., Nowotny, A. (eds) Endotoxin. Advances in Experimental Medicine and Biology, vol 256. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5140-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5140-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5142-0

  • Online ISBN: 978-1-4757-5140-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics