Advertisement

Density Functional Theory of Metal Surfaces

  • Ansgar Liebsch
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

One of the main themes of this volume is the sensitivity of electronic excitations at metal surfaces to the ground-state electronic properties in the surface region and to the nonlocal response of surface electrons to incident electromagnetic fields. The density functional approach provides an accurate description of both properties. Since this scheme forms the theoretical basis for nearly all linear and nonlinear electronic excitations treated in the following chapters, we describe here the salient aspects of this approach. Section 1 deals with ground-state properties. We introduce the local density approximation and the jellium model for which most calculations have so far been performed. We also discuss the so-called stabilized jellium model that takes the electron—ion interaction into account in a better way than the standard jellium model. The static response properties of jellium surfaces are presented for both models. The time-dependent extension of the density functional method is the topic of Section 2. We focus on the adiabatic treatment of the induced exchange-correlation potential, but we also mention recent dynamical generalizations. An important feature is the description of some of the computational procedures for evaluating surface response properties; these are presented in Section 3. We give the expressions of relevant quantities and point out the necessary steps that allow a stable and accurate calculation of induced dipole moments; additional aspects are pointed out in other chapters.

Keywords

Density Functional Theory Work Function Local Density Approximation Adiabatic Limit Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aers, G. C., and J. E. Inglesfield, Surf. Sci. 217, 367 (1989).ADSCrossRefGoogle Scholar
  2. Ando, T., Solid State Commun. 21, 133 (1977).MathSciNetADSCrossRefGoogle Scholar
  3. Appelbaum, J. A., and D. R. Hamann, Phys. Rev. B 6, 1122 (1972).Google Scholar
  4. Blügel, S., doctoral thesis, RWTH Aachen (1987).Google Scholar
  5. Böhm, H. M., S. Conti, and M. P. Tosi, J. Phys. CM 8, 781 (1996).Google Scholar
  6. Ceperley, D. M., and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  7. Dabrowski, B., Phys. Rev. B 34, 4989 (1986).Google Scholar
  8. Dobson, J. F., Phys. Rev. Lett. 73, 2244 (1994).CrossRefGoogle Scholar
  9. Dobson, J. F., and G. H. Harris, Phys. Rev. B 27, 6542 (1983).Google Scholar
  10. Dobson, J. F., and G. H. Harris, J. Phys. C 21, L729 (1988).Google Scholar
  11. Dreizler, R. M., and E. K. U. Gross, Density Functional Theory ( Springer, Berlin, 1990 ).zbMATHCrossRefGoogle Scholar
  12. Eguiluz, A. G., Phys. Rev. B 31, 3303 (1985).Google Scholar
  13. Eguiluz, A. G., and W. Hanke, Phys. Rev. B 39, 10433 (1989).Google Scholar
  14. Ekardt, W., Phys. Rev. B 31, 6360 (1985).Google Scholar
  15. García—Gonzalez, P., and A. Liebsch, to be published (1997).Google Scholar
  16. Gies, P., and R. R. Gerhardts, Phys. Rev. B 31, RC6843 (1985).Google Scholar
  17. Gies, P., and R. R. Gerhardts, Phys. Rev. B 36, 4422 (1987).Google Scholar
  18. Gross, E. K. U., and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985); Erratum: ibid. 57, 923 (1986).CrossRefGoogle Scholar
  19. Haensel, R., G. Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969).ADSCrossRefGoogle Scholar
  20. Hartree, D. R., The Calculation of Atomic Structures, Sec. 5. 3. 3 ( Wiley, New York, 1957 ).Google Scholar
  21. Hohenberg, P., and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  22. Inglesfield, J. E., J. Phys. C 14, 3795 (1981).ADSCrossRefGoogle Scholar
  23. Inglesfield, J. E., Surf. Sci. 188, L701 (1987).ADSCrossRefGoogle Scholar
  24. Ishida, H., and A. Liebsch, Phys. Rev. B 45, 6171 (1992).ADSCrossRefGoogle Scholar
  25. Ishida, H., and A. Liebsch, Phys. Rev. B 50, 4834 (1994).Google Scholar
  26. Iwamoto, N., and E. K. U. Gross, Phys. Rev. B 35, 3003 (1987).Google Scholar
  27. Jepsen, O., M. Madsen, and O. K. Andersen, J. Magn. Magn. Mat. 15 -18, 867 (1980).Google Scholar
  28. Jones, R. O., and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  29. Kempa, K., and W. L. Schaich, Phys. Rev. B 37, 6711 (1988).ADSCrossRefGoogle Scholar
  30. Kiejna, A., in Inelastic Energy Transfer in Interactions with Surfaces and Adsorbates, B. Gumhalter, A. C. Levi, and F. Flores, eds. ( World Scientific, Singapore, 1993 ) p. 129.Google Scholar
  31. Kiejna, A., Surf. Sci. 331-333, 1167 (1995).ADSCrossRefGoogle Scholar
  32. Kohn, W., Phys. Rev. 123, 1242 (1961).ADSzbMATHCrossRefGoogle Scholar
  33. Kohn, W., and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  34. Lang, N. D., Solid State Phys. 28, 225 (1973).CrossRefGoogle Scholar
  35. Lang, N. D., Phys. Rev. Lett. 46, 842 (1981).ADSCrossRefGoogle Scholar
  36. Lang, N. D., in Theory of the Inhomogeneous Electron Gas, S. Lundqvist and N. H. March, eds. ( Plenum, New York, 1983 ).Google Scholar
  37. Lang, N. D., and W. Kohn, Phys. Rev. B 1, 4555 (1970).Google Scholar
  38. Lang, N. D., and W. Kohn, Phys. Rev. B 3, 1215 (1971).Google Scholar
  39. Lang, N. D., and W. Kohn, Phys. Rev. B 7, 3541 (1973).Google Scholar
  40. Langreth, D. C., Phys. Rev. B 5, 2842 (1972).Google Scholar
  41. Levine, Z. H., and P. Soven, Phys. Rev. A 29, 625 (1984).Google Scholar
  42. Liebsch, A., Phys. Rev. Lett. 54, 67 (1985a).ADSCrossRefGoogle Scholar
  43. Liebsch, A., Phys. Rev. B 32, 6255 (1985b).Google Scholar
  44. Liebsch, A., J. Phys. C 19, 5025 (1986).ADSCrossRefGoogle Scholar
  45. Liebsch, A., Phys. Rev. B 36, 7378 (1987).Google Scholar
  46. Liebsch, A., and W. L Schaich, Phys. Rev. B 40, 5401 (1989).Google Scholar
  47. Lundqvist, S., and N. H. March, eds. Theory of the Inhomogeneous Electron Gas ( Plenum, New York, 1983 ).Google Scholar
  48. Mahan, G. D., Phys. Rev. A 22, 1780 (1980).Google Scholar
  49. Mahan, G. D., Many-Particle Physics ( Plenum, New York, 1990 ).CrossRefGoogle Scholar
  50. Mahan, G. D., and K. R. Subbaswamy, Local Density Theory of Polarizability ( Plenum, New York, 1990 ).Google Scholar
  51. Manninen, M., R. M. Nieminen, P. Hautojärvi, and J. Arponen, Phys. Rev. B 12, 4012 (1975).Google Scholar
  52. Monnier, R., J. P. Perdew, D. C. Langreth, and J. W. Wilkins, Phys. Rev. B 18, 656 (1978).Google Scholar
  53. Nuroh, K., M. J. Stott, and E. Zaremba, Phys. Rev. Lett. 49, 862 (1982).ADSCrossRefGoogle Scholar
  54. Ossicini, S., C. M. Bertoni, and P. Gies, Surf. Sci. 178, 244 (1986).ADSCrossRefGoogle Scholar
  55. Parr, R. G., and W. Yang, Density Functional Theory of Atoms and Molecules ( Oxford University, Oxford, 1989 ).Google Scholar
  56. Perdew, J. P., H. Q. Tran, and E. D. Smith, Phys. Rev. B 42, 11627 (1990).Google Scholar
  57. Perdew, J. P., and A.. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
  58. Persson, B. N. J., and E. Zaremba, Phys. Rev. B 31, 1864 (1985).Google Scholar
  59. Peuckert, V., J. Phys. C 11, 4945 (1978).ADSCrossRefGoogle Scholar
  60. Pines, D., Elementary Excitations in Solids ( Benjamin, New York, 1964 ).zbMATHGoogle Scholar
  61. Puska, M. J., R. M. Nieminen, and M. Manninen, Phys. Rev. B 31, 3486 (1985).Google Scholar
  62. Quong, A. A., A. A. Maradudin, R. F. Wallis, J. A. Gaspar, A. G. Eguiluz and G. P. Alldredge, Phys. Rev. Lett. 66, 743 (1991).ADSCrossRefGoogle Scholar
  63. Rubio, A., L. C. Balbâs, and J. A. Alonso, Phys. Rev. B 46, 4891 (1992).Google Scholar
  64. Runge, J. H., and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).ADSCrossRefGoogle Scholar
  65. Senatore, G., and K. R. Subbaswamy, Phys. Rev. B 35, 2440 (1987).Google Scholar
  66. Shore, H. B., and J. H. Rose, Phys. Rev. Lett. 66, 2519 (1991).ADSCrossRefGoogle Scholar
  67. Stott, M. J., and E. Zaremba, Phys. Rev. A 21, 121 (1980).Google Scholar
  68. Sturm, K., private communication (1995).Google Scholar
  69. Sugiyama, A., J. Phys. Soc. Japan 15, 965 (1960).Google Scholar
  70. Tsuei, K. D., E. W. Plummer, A. Liebsch, E. Pehlke, K. Kempa, and P. Bakshi, Surf. Sci. 247, 302 (1991).ADSCrossRefGoogle Scholar
  71. Ullrich, C. A., U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 74, 872 (1995).ADSCrossRefGoogle Scholar
  72. Vignale, G., and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).ADSCrossRefGoogle Scholar
  73. Weber, M., and A. Liebsch, Phys. Rev. B 35, 7411 (1987).Google Scholar
  74. Weinert, M., private communication (1994).Google Scholar
  75. Zangwill, A. , and P. Soven, Phys. Rev. A 21, 1561 (1980).Google Scholar
  76. Zangwill, A., J. Chem. Phys. 78, 5926 (1983).ADSCrossRefGoogle Scholar
  77. Zhang, Z. Y., D. C. Langreth, and J. P. Perdew, Phys. Rev. B 41, 5674 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ansgar Liebsch
    • 1
  1. 1.Forschungszentrum JülichJülichGermany

Personalised recommendations