Dynamic Coupling and Time-Patterns of Glycolysis

  • Benno Hess
  • Dietrich Kuschmitz
  • Mario Markus
Part of the Nato Science Series A: (closed) book series (NSSA, volume 81)


The property of self-organization is a fundamental feature of living systems. Macroscopically, it is reflected in the phenomena of evolution, of differentiation and of numerous other biological functions. The quality of organization results from basic thermodynamic and kinetic constraints, to which the occurrence of biological systems is fundamentally bound, and its theoretical frame lies in the concept of dissipative structure as a new science of motion.


Pyruvate Kinase Metabolite Concentration Dissipative Structure Time Pattern Dynamic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boiteux, A., Goldbeter, A. and Hess, B. (1975) Proc. Natl. Acad. Sci. USA 72 (10), 3829–3833.PubMedCrossRefGoogle Scholar
  2. Plesser, Th. (1977) in: VII Int. Konf. tiber nichtlineare Schwingungen G. Schmidt, ed., Akademie Verlag, Berlin, 2, 273–280.Google Scholar
  3. Blangy, D., Buc, H. and Monod, J. (1968) J. Mol. Biol. 31, 13–35.PubMedCrossRefGoogle Scholar
  4. Boiteux, A., Markus, M., Plesser, Th., Hess, B. and Malcovati, M. (1983) Biochem. J. 211, 631–640.PubMedGoogle Scholar
  5. Markus, M., Plesser, Th., Boiteux, A., Hess, B. and Malcovati, M. (1980) Biochem. J. 189, 421–433.PubMedGoogle Scholar
  6. Hess, B. and Markus, M. (1983) in Synergetics: from microscopic to macroscopic order, Springer Verlag, Berlin, Heidelberg, New York, pp. 6–16.Google Scholar
  7. Schuster, P., Sigmund, K. and Wolff, R. (1979) SIAM J. Appl. Math. C. 37 (I), 49–54.CrossRefGoogle Scholar
  8. Decroly, O. and Goldbeter, A. (1982) Proc. Natl. Acad. Sci. 79, 6917–6921.PubMedCrossRefGoogle Scholar
  9. Minorsky, N. (1974) Nonlinear oscillations, R.E. Krieger Publ., Huntington, N. Y.Google Scholar
  10. Kubicek, M. and Marek, M. (1983) Computational Methods in bifurcation theory and dissipative structures, Springer Verlag, New-York, Berlin, Heidelberg, Tokyo.CrossRefGoogle Scholar
  11. Li, T.Y. and Yorke, J.A. (1975) Amer. Math. Mon. 82, 985–992.CrossRefGoogle Scholar
  12. Markus, M. and Hess, B. (1984) Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  13. Hess, B., Boiteux, A. and Kuschmitz D. (1983) in Biological oxidations, Springer Verlag, Berlin, Heidelberg, New York, pp. 249–266.CrossRefGoogle Scholar
  14. Goffeau, A. and Slayman, C.W. (1981) Biochim. Biophys. Acta 639, 197–223.PubMedCrossRefGoogle Scholar
  15. Aiuchi, T., Tanabe, H., Kurihara, K. and Kobotake, Y. (1980) Biochim. Biophys. Acta 628, 355–364.PubMedCrossRefGoogle Scholar
  16. Aiuchi, T., Daimatsu, T., Nakayaka, K. and Nakamura, Y. (1982) Biochim. Biophys. Acta 685, 289–296.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Benno Hess
    • 1
  • Dietrich Kuschmitz
    • 1
  • Mario Markus
    • 1
  1. 1.Max-Planck Institut für ErnährungsphysiologieDortmundWest-Germany

Personalised recommendations