Chromosomal Mapping of Human DNA Repair Genes

  • Miria Stefanini


Despite the extensive studies carried out to localize the genes involved in DNA repair processes in human chromosomes, these efforts have only re­cently proved successful.


Human Chromosome Chinese Hamster Ovary Cell Chinese Hamster Cell L5178Y Cell Xeroderma Pigmentosum Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Collins, A., and Johnson, R.T., 1987, DNA repair mutants in higher eukaryotes. J. Cell. Sci. Suppl 6: 61.Google Scholar
  2. Duin van, M., de Wit, J., Odijk, H., Westerveld, A., Yasui, A., Koken, A., Hoeijmarkers, J.H.J., and Bootsma, D., 1986, Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RADIO. Cell 44: 913.PubMedCrossRefGoogle Scholar
  3. Hama-Inaba, H., Hieda-Shiomi, N., Shiomi, T., and Sato, K., 1983, Isolation and characterization of mitomycin-C-sensitive lymphoma cell mutants. Mutat. Res 108: 405.Google Scholar
  4. Hanawalt, P.C., and Sarasin, A., 1986, Cancer-prone hereditary diseases with DNA processing abnormalities. T.I.G. 124.Google Scholar
  5. Hori, T.A., Shiomi, T., and Sato, K., 1983, Human chromosome 13 compensates a DNA repair defect in UV-sensitive mouse cell by mouse-human cell hybridization. Proc. Natl. Acad. Sci USA 80: 5655.Google Scholar
  6. Jeggo, P.A., 1985, Genetic analysis of X-ray sensitive mutants of the CHO cell line. Mutat Res 146: 265.CrossRefGoogle Scholar
  7. Jones, N.J., Debenham, P.G., and Thacker, J., 1986, New X-ray-sensitive mutants of cultured hamster cells. Br. J. Cancer 54: 349.Google Scholar
  8. Keijzer, W., Stefanini, M., Bootsma, D., Verkerk, A., Guerts van Kessel, A. H.M., Jongkind, J.F., and Westerveld, A., 1987, Localization of a gene involved in complementation of the defect in Xeroderma Pigmentosum group A cells on human chromosome 1. Exp. Cell. Res 169: 490.Google Scholar
  9. Kraemer, K., and Slor, H., 1985, Xeroderma pigmentosum. Clin. Dermatol 3: 1.Google Scholar
  10. Lalley, P.A., Diaz, J.A., Francis, A.A., Dunn, W.C., and Regan, J.D., 1984, The expression and chromosomal assignments of genes required for repair of UV-induced DNA damage. Cyt. Cell Genet 37: 516.Google Scholar
  11. Lin, P.F., and Ruddle, F.H., 1981, Murine DNA repair gene located on chromosome 4. Nature 289: 191.Google Scholar
  12. Ray, J.H., Louie, E., and German J., 1987, Different mutations are responsible for the elevated sister-chromatid exchange frequencies characteristic of Bloom’s syndrome and hamster EM9 cells. Proc. Natl. Acad. Sci USA 84: 23–68.Google Scholar
  13. Robson, C.N., Harris, A.L., and Hickson, I.D., 1985, Isolation and characterization of Chinese hamster ovary cell lines sensitive to mitomycin C and bleomycin. Cancer Res 45: 5305.Google Scholar
  14. Robson, C.N., Harris, A.L., and Hickson, I.D., 1986, Characterization of mitomycin C sensitive mutants of CHO-Kl cells and their use as hosts for the cloning of human DNA repair genes. Br. J. Cancer 54: 350.Google Scholar
  15. Rubin J.S., Prideaux, U.R., Willard, H.F., Dulhanty, A.M., Whitmore, G.F., and Bernstein, A., 1985, Chromosomal localization of DNA sequences associated with a human DNA repair gene. Mol. and Cell Biology 5: 398.Google Scholar
  16. Schultz, R.A., Saxon, P.J., Glover, T.W., and Freidberg, E.C., 1987, Microcell-mediated transfer of a single human chromosome complements xeroderma pigmentosum group A fibroblasts. Proc. Natl. Acad. Sci USA 84: 4176.Google Scholar
  17. Siciliano, M.J., Carrano, A.V., and Thompson, L.H., 1985, Chromosome 19 corrects the complementing DNA repair mutations present in CHO cells. Cytogenet. Cell Genet 40: 744.Google Scholar
  18. Siciliano, M.J., Carrano, A.V., and Thompson, L.H., 1986, Assignment of a human DNA-repair gene associated with sister-chromatid exchange to chromosome 19. Mut. Res 174: 303.Google Scholar
  19. Shiomi, T., Hieda-Shiomi, N., and Sato, K., 1982, Isolation of UV-sensitive mutants of mouse L5178Y cells by a cell suspension spotting method. Somat. Cell Genet 8: 329.Google Scholar
  20. Stefanini, M., Keijzer, M., Reuser, A.J.J., Guerts van Kessel, A.H.M., Verkerk, A., Westerveld, A., Jongkind, J.F. and Bootsma, D., 1983, Localization of genes involved in DNA repair on human chromosomes by using cell fusion. In: “The use of human cells for the evaluation of risk from physical and chemical agents” A. Castellani, ed. Plenum, New York.Google Scholar
  21. Stefanini, M., Keijzer, W., Westerveld, A., and Bootsma, D., 1985, Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells. Exp. Cell Res 161: 373.Google Scholar
  22. Stefanini, M., Mondello, C., Tessera, M.L., Botta, E., and Nuzzo, F., 1987, Genetic complementation in UV sensitive Chinese hamster mutants. Eur. J. Cell. Biol 44 Suppl. 21: 12.Google Scholar
  23. Thompson, L.H., Busch, D.B., Brookman, K., Mooney, C.L., and Glaser, D.A., 1981, Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells. Proc. Natl. Acad. Sci USA 78: 3734.Google Scholar
  24. Thompson, L.H., and Carrano, A.V., 1983, Analysis of mammalian cell mutagenesis and DNA repair using in vitro selected CHO cell mutants. In: “Cellular responses to DNA damage”, UCLA Symposia on Molecular and Cellular Biology, NS. Vol. 11, E.C. Friedberg and B.A. Bridges, eds., Liss, New York.Google Scholar
  25. Thompson, L.H., 1985, DNA repair mutants. In: “Molecular cell genetics: the Chinese hamster cell”, M.M. Gotesman, ed., John Wiley and Sons, Inc., New York.Google Scholar
  26. Thompson, L.H., Mooney, C.L., and Brookman, K.W., 1985a, Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Mutat. Res 150: 423.Google Scholar
  27. Thompson, L.H., Mooney, C.L., Burkhart-Schultz, K., Carrano, A.V., and Siciliano, M.J., 1985b, Correction of a nucleotide-excision-repair mutation by human chromosome 19 in hamster-human hybrid cells. Somat. Cell Mol. Genet 11: 87.Google Scholar
  28. Thompson, L.H., Salazar, E.P., Brookman, K.W., Collins, C.C., Stewart, S.A., Busch, D.B., and Weber, C.A., 1987, Recent progress with the DNA repair mutants of Chinese hamster ovary cells. J. Cell. Sci Suppl. 6, in press.Google Scholar
  29. Tsuji, H., Shiomi, T., Tsuji, S., Tobari, I., Ayusawa, D., Shimizu, K., and Seno, T, 1986, Aphydicolin-resistant mutants of mouse lymphoma L5178Y cells with a high incidence of spontaneous sister chromatid exchanges. Genetics 113: 433.Google Scholar
  30. Wit de,J., Hoeijmakers, J.H.J., van Duin, M., van Agthoven, T., Guerts van Kessel, A., Westerveld, A., and Bootsma, D., 1985, Assignment of the DNA repair gene (ERCC1) to human chromosome 19. Cyt. Cell. Genet 40: 617.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Miria Stefanini
    • 1
  1. 1.Istituto di Genetica Biochimica ed Evoluzionistica C.N.R.PaviaItaly

Personalised recommendations