Skip to main content

X-rays Induced Double Strand Breaks: Damage Distribution and Measurement

  • Chapter
DNA Damage and Repair
  • 133 Accesses

Abstract

The nucleus of mammalian cell is an highly organized and complex structure containing a large amount of DNA arranged at least in three order levels including the nucleosome, the 30 um solenoid and the loops, wich form domains attached at their base to the nuclear matrix 1,2. The latter is an insoluble, structural framework that is composed of elements of the pore complex and lamina, nucleolus and an internal network of ribonucleoproteins attached to a fibrous protein mesh, the scaffoild-proteins 3 Two different forms of chromatin exist. The first, the bulk chromatin, may serve to hide the information content of the genome, with histons playing the role of repressors 4, so that the activity of a genomic region is related to alterations both local and extended of the bulk chromatin 5. The second form of chromatin, active or open chromatin, possess an higher sensitivity and site-restricted hypersensitivity to nucleases action 6,7. This fact has been demostrated both in in vitro cel-lular systems 8 and in fetal and adult erythropoietic tissues 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Lewis, J.S. Lebkowski, A.K. Daly J. Cell Sci. Suppl. 1, 103, (1984).

    PubMed  CAS  Google Scholar 

  2. J. Mirkovitch, M.E. Mirault, U.K. 223, (1984).

    Google Scholar 

  3. J. R. Paulson, U.K. Laemmli, Cell, 1 2, 817, (1977).

    Article  Google Scholar 

  4. S. Weisbrod, Nature, 297, 289, (1982)

    Article  PubMed  CAS  Google Scholar 

  5. T. Igo-Kemenes, W. Horz, and H..Zachan, Ann. Rev. Biochem., 51, 89, (1982).

    Article  CAS  Google Scholar 

  6. B. Gazit, H. Cedar, I. Lerer, and R. Voss, Science, 217, 648, (1982).

    Article  PubMed  CAS  Google Scholar 

  7. Jing-de Zhu, A.Maggi, and J.Paul, Nucleic Acid Res., 12, 232, (1984).

    Google Scholar 

  8. N. Hutchison, S. Wenitraub, Cell, 43, 471, (1985).

    Article  PubMed  CAS  Google Scholar 

  9. M. Groudine, T. Kohwi-Shigematsu, R.Gelinas, G. Stamatoyannopoulos, I. Papayannopoulon, Proc. Natl. Acad. Sci. USA, 80, 7551, (1983).

    Article  CAS  Google Scholar 

  10. M.G. Fried, and M. Crothers, J. Mol. Biol. 172, 263, (1984).

    Article  PubMed  CAS  Google Scholar 

  11. S.M. Gasser, and U.K. Laemmli, Trends in Genetics, 3, 16, (1987).

    Article  CAS  Google Scholar 

  12. K.T. Wheeler and K. Wierowski, Radiat. Environ. Biophys. 22, 3, (1983).

    Article  CAS  Google Scholar 

  13. K.T. Wheeler, and G.B. Nelson, Radiat. Res., 109, 109, (1987).

    Article  PubMed  CAS  Google Scholar 

  14. S.M. Chiu, N.L. Oleinick, L.R. Friedman, and P.J. Stambrook, Biochim. Biophys. Acta, 699, 15, (1982).

    Article  CAS  Google Scholar 

  15. S.M. Chiu, and N.L. Oleinick, Int. J. Radiat. Biol., 41, 71, (1982).

    Article  CAS  Google Scholar 

  16. R.Ramanathan, S. Rajalakshmi, D.R.S. Sarma, and E. Farber, Cancer Res., 36, 2073, (1976).

    CAS  Google Scholar 

  17. R. Warters, and T.J. Childers, Radiat. Res. 90, 564, (1982).

    Article  PubMed  CAS  Google Scholar 

  18. Sapora and E.M. Fielden, in: “Advanced Topics on Radiosensitizers of hypoxic cells”, A.Breccia, L.Rimondi and G.E.Adams eds., Plenum Press, New York and London, vol.I, pg. 105, (1982).

    Google Scholar 

  19. K.H. Chadwick and H.P. Leenhouts, “Molecular Theory of Radiation Biology”, Springer-Verlag, Berlin, Heidelberg, New York, (1981).

    Google Scholar 

  20. D. Blocher, W. Pohlit, Int. J. Radiat. Biol., 42, 329, (1982).

    Article  CAS  Google Scholar 

  21. W. Pohlit, Radiat. Protection Microdosimetry, 13, 271, (1985).

    Google Scholar 

  22. I.R. Radford, Int. J. Radiat. Biol., 49, 611, (1986).

    Article  CAS  Google Scholar 

  23. F. Barone, M. Belli, E. Rongoni, O. Sapora, and M.A. Tabocchini, in: “Radiation Carcinogenesis and DNA Alterations”, F.J.Burns, A.C.Upton, and G.Silini, eds, Plenum Press, New York and London, pg. 293, (1986).

    Google Scholar 

  24. C. Heussen, Z. Nackerdieu, B.J. Smit and K. Bohm, Radiat. Res., 110, 84, (1987).

    Article  PubMed  CAS  Google Scholar 

  25. L.K. Mee, and L. Adelstein, Radiat. Res., 26, 13, (1987)

    CAS  Google Scholar 

  26. W.A. Cramp, J.C. Edwards, A.M. George, and S.A. Sabovljev, Brit. J. Cancer, 49, suppl.VI, 7, (1984).

    Google Scholar 

  27. D. Blocher, Int. J. Radiat. 42, 317, (1983).

    Article  Google Scholar 

  28. Sapora and L. Chiara, CNEN-rt/PROT. 14, (1981).

    Google Scholar 

  29. I. Rubenstein and S.B. Leighton, Biophys. Chem. 1, 292, (1974).

    Article  PubMed  CAS  Google Scholar 

  30. R.A. Fox, Int. J. Radiat. Biol., 30, 67, (1976).

    Article  CAS  Google Scholar 

  31. I.R. Radford, and G.S. Hodgson, Int. J. Radiat. Biol., 48, 555, (1985).

    Article  CAS  Google Scholar 

  32. J.W. Evans, C.L. Limoli, and J.F. Ward, 34th Annual Meeting of the Radiation Research Society, Book of Abstracts, Cq-17, (1986).

    Google Scholar 

  33. W.G. Woods, Biochim. Biophys. Acta, 655, 342, (1981).

    Article  CAS  Google Scholar 

  34. Sapora, A. Maggi and M. Quintiliani, in: “Radiation Carcinogenesis and DNA Alterations”, F.J.Burns, A.C. Upton and G. Silini, Plenum Press, New York and London, pg. 331, (1986).

    Chapter  Google Scholar 

  35. M.J. Tilby and P.S. Loverock,: 7th International Congress Radiation Research, Book of Abstracts, B2–39, (1983).

    Google Scholar 

  36. M.J. Tilby and P.S. Loverock, Radiat. Res., 96, 309, (1984).

    Article  Google Scholar 

  37. S.C. VanAnkeren and K.T. Wheeler, Biophys. J., 45, 421, (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sapora, O. (1989). X-rays Induced Double Strand Breaks: Damage Distribution and Measurement. In: Castellani, A. (eds) DNA Damage and Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5016-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5016-4_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5018-8

  • Online ISBN: 978-1-4757-5016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics