DNA Unwinding: Common Modification Induced by “Bulky Adducts” to DNA Structure

  • A. M. Pedrini
  • S. Tornaletti
  • S. Barabino
  • G. Fronza
  • P. Menichini
  • A. Abbondandolo
Chapter

Abstract

It is very well documented that many, perhaps all, mutagens and carcinogens either bind covalently to DNA (chemical agents) or modify its chemistry (physical agents). This interaction is expected to introduce relevant changes, not only in the primary structure of DNA, but also in the conformation of nucleic acid at the site of modification. Since the preservation of the unique three-dimensional structure of the double helix appears to be a prerequisite for its unimpaired biological activity, a detailed description of these conformational changes seems important if we want to understand how repair enzymes can recognize and thereby affect removal of modified sites in DNA (Friedberg, 1985).

Keywords

Electrophoretic Mobility Double Helix Pyrimidine Dimer Helix Axis Thymine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagchi, B., Basu, S., Mistra, D.N., and Das Gupta, N.N., 1969, Conformation of UV irradiated DNA, Int. J. Radiat. Biol. 16: 301.Google Scholar
  2. Belli, M., Matzeu, M., Mazzei, F., Onori, G., and Quaranta, O.M., 1983, Conformational changes induced in calf thymus DNA by UV radiation, Stud. Biophys. 95: 75.Google Scholar
  3. Benham, C., J., 1981, Theoretical analysis of competitive conformational transitions in torsionally stressed DNA, J. Mol. Biol. 150: 43.PubMedCrossRefGoogle Scholar
  4. Broyde, S., Stellman, S., and Hingerty, B., 1980, DNA backbone conformation in cis-syn pyrimidine [ ] pyrimidine cyclobutane dimers, Biopolymers 9: 1695.Google Scholar
  5. Camerman, N., and Camerman, A., 1968, Photodimer of thymine in ultraviolet-irradiated DNA: proof of structure by X-ray diffraction, Science 160: 1451.Google Scholar
  6. Cerutti, P.A., 1978, Repairable damage in DNA: overview, in: “DNA Repair Mechanisms”, P.C. Hanawalt, E.C. Friedberg, and C.F. Fox, eds., Academic Press, New York.Google Scholar
  7. Ciarrocchi, G., and Pedrini, A.M., 1982, Determination of pyrimidine dimer unwinding angle by measurement of DNA electrophoretic mobility, J. Mol. Biol. 155: 177.Google Scholar
  8. Ciarrocchi, G., Sutherland, B.M., and Pedrini, A.M., 1982, Photoreversal of DNA unwinding caused by pyrimidine dimers, Biochimie 64: 665.Google Scholar
  9. Cohen, G.L., Bauer, W.R., Barton, J.K., and Lippard, S.J., 1979, Binding of cis-and trans-dichlorodiammineplatinum (II) to DNA: evidence for unwinding and shortening of the double helix, Science 203: 1014.Google Scholar
  10. Denhardt, D.T., and Kato, A.C., 1973, Comparison of the effect of ultraviolet radiation and ethidium bromide intercalation on the conformation of superhelical X174 replicative form DNA, J. Mol Biol. 77: 479.Google Scholar
  11. Depew, R.E., and Wang, J.C., 1975, Conformational fluctuations of DNA helix, Proc. Natl. Acad. Sci. USA 72: 4275.Google Scholar
  12. Diekmann, S., and Wang, J.C., 1985, On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities, J. Mol. Biol. 186: 1.Google Scholar
  13. Drinkwater, N.R., Miller, J.A., Miller, E.C., and Yang, N.C., 1978, Covalent intercalative binding to DNA in relation to the mutagenicity of hydrocarbon epoxides and N-acetoxy-2-acetylaminofluorene, Cancer Res. 38: 3247.Google Scholar
  14. Edenberg, H.J., 1982, Altered structure of ultraviolet-irradiated DNA: evidence for unwinding, Cold Spring Harbor Symp. Quant. Biol. 47: 379.Google Scholar
  15. Friedberg, E.C., 1985, DNA Repair W.H. Freeman and Co. New York.Google Scholar
  16. Gamper, H.B., Straub, K., Calvin, M., and Bartholomew, J.C., 1980, DNA alkylation and unwinding induced by benzo(a)pyrene diol epoxide: Modulation by ionic strength and superhelicity, Proc. Natl. Acad. Sci. USA 77: 2000.Google Scholar
  17. Hayes, F.N., Williams, D.L., Ratliff, R.L., Varghese, A.J., and Rupert, C.S., 1971, Effect of a single thymine photodimer on the oligodeoxythymidilate-polydeoxyadenylate interaction, J. Am. Chem. Soc. 93: 4940.Google Scholar
  18. Heflich, R.H., Dorney, D.J., Maher, V.M., and McCormick, J.J., 1977, Reactive derivatives of benzo(a)pyrene and 7, 12-dimethylbenz(a)anthracene cause S1 nuclease sensitive sites in DNA and “UV-like” repair, Biochem. Biophys. Res. Commun. 77: 634.Google Scholar
  19. Kahn, M., 1974, The effect of thymine dimers on DNA: DNA hybridisation, Biopolymers 13: 669.Google Scholar
  20. Kato, A.C., and Fraser, M.J., 1973, Action of single-strand specific Neurospora crassa endonuclease on ultraviolet light irradiated native DNA, Biochem. Biophys. Acta 312: 645.Google Scholar
  21. Kemmink, J., Boelens, R., Koning, T.M.G., Kaptein, R., van der Marel, G.A., and van Boom, J.H., 1987, Conformational changes in the oligonucleotide duplex d(GCGTTGCG) d(CGCAACGC) induced by formation of a cis-syn thymine dimer. A two dimensional NMR study, Eur. J. Biochem. 162: 37.Google Scholar
  22. Lang, M.C.E., Freund, A.M., de Murcia, G., Fuchs, R.P.P., and Daune, M.P., 1979, Unwinding of supercoiled Col El-DNA after covalent binding of the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene and its 7-iodo derivative, Chem. Biol. Interactions 28: 171.Google Scholar
  23. Legerski, R.J., Gray, H.B. Jr., and Robberson, D.L., 1977, A sensitive endonuclease probe for lesions in deoxyribonucleic acid helix structure produced by carcinogenic and mutagenic agents, J. Biol. Chem. 252: 8740.Google Scholar
  24. Lindahl, T., 1979, DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base-excision repair, Progr. Nucl. Acid Res. Mol. Biol. 20: 135.Google Scholar
  25. Meehan, T., Gamper, H. and Becker, J.F., 1982, Characterization of reversible physical binding of benzo(a)pyrene derivatives to DNA, J. Biol. Chem. 257: 10479.Google Scholar
  26. Pearlman, D.A., Hoibrook, S.R., Pirkle, D.H., and Kim, S.H., 1985, Molecular models for DNA damaged by photoreaction, Science 227: 1304.Google Scholar
  27. Peck, L.J., and Wang, J.C., 1981, Sequence dependence of the helical repeat of DNA in solution, Nature 292: 375.Google Scholar
  28. Pedrini, A.M., Tornaletti, S., Menichini, P. and Abbondandolo, A., 1986, Pyrimidine dimers induced alteration of DNA tertiary structure: evidence for unwinding and shortening. In: “Mechanisms of DNA Damage and Repair”, M.G. Simic, L. Grossman, and A.C. Upton, Eds., Plenum Publishing Co.Google Scholar
  29. Scovell, W.M., and Collart, F., 1985, Unwinding of supercoiled DNA by cis-and trans-diamminedichloroplatinum (II): influence of the torsional strain on DNA unwinding, Nucleic Acids Res. 13: 2881.Google Scholar
  30. Shafranovskaya, N.N., Trifonov, E.N., Lazurkin, Yu.S., Frank-Kamenetskii, M.D., 1973, Clustering of thymine dimers in ultraviolet irradiated DNA and the long-range transfer of electronic excitation along the molecule, Nature New Biology 241: 58.Google Scholar
  31. Shishido, K., and Ando, T., 1974, Cleavage of ultraviolet light-irradiated DNA by single strand-specific S1 endonuclease, Biochem. Biophys. Res. Common. 59: 1380.Google Scholar
  32. Sinden, R.R. and Hagerman, P.J., 1984, Interstrand psoralen cross-links do not introduce appreciable bends in DNA, Biochemistry 23: 6299.PubMedGoogle Scholar
  33. Triebel, H., Reinert, K.E., B?r, H., and Lang, H., 1979, Structural changes of ultraviolet-irradiated DNA derived from hydrodynamic measurements, Biochem. Biophys. Acta 561: 59.Google Scholar
  34. Vorlickova, M., and Palecek, E., 1978, Changes in properties of DNA caused by gamma and ultraviolet radiation. Dependence of conformational changes on the chemical nature of the damage, Biochem. Biophys. Acta 517: 308.Google Scholar
  35. Wang, J.C., 1979, Helical repeat of DNA in solution, Proc. Natl. Acad. Sci. USA 76: 200.Google Scholar
  36. Wang, S.Y., 1976, Photochemistry and photobiology of nucleic acids, Vol. II, Academic Press, N.Y.Google Scholar
  37. Wiesehahn, G., and Hearst, J.E., 1978, DNA unwinding induced by photoaddition of psoralen derivatives and determination of dark-binding equilibrium by gel electrophoresis, Proc. Natl. Acad. Sci. USA 75: 2703.Google Scholar
  38. Woodworth-Gutai, M., Lebowitz, J., Kato, A.C., and Denhardt, D.T., 1977, Ultraviolet light irradiation of PM2 superhelical DNA, Nucleic Acids Res. 4: 1243.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. M. Pedrini
    • 1
  • S. Tornaletti
    • 1
  • S. Barabino
    • 1
  • G. Fronza
    • 2
  • P. Menichini
    • 2
  • A. Abbondandolo
    • 2
  1. 1.Istituto di Genetica biochimica ed Evoluzionistica del C.N.R.PaviaItaly
  2. 2.Istituto Scientifico TumoriGenovaItaly

Personalised recommendations