A Short Review of Methods for Detecting DNA Fragmentation and Associated Phenomena

  • Patrizia Russo
  • Maurizio Taningher
  • Anna Maria Orengo
  • Silvio Parodi


This paper focuses on DNA damage that can be measured in terms of macromolecular properties, that is, in terms of changes in the overall behaviour of very large molecules. This kind of damage is of interest because it can be measured with very high sensitivity since the effect of a single lesion is greatly amplified. It is the enormous size of DNA molecules that gives these methods their power. A limitation, however, is that large DNA molecules are very fragile and cannot be isolated intact from mammalian cells. A partial solution to the problem is to measure the DNA that is released by gentle cell lysis without carrying out any isolation steps that tend to cause fragmentation.


Sucrose Gradient Lithocholic Acid Intercalate Agent Elution Rate Strand Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Ewig, and K.W. Kohn, DNA-protein cross-linking and DNA inter-strand cross-linking by haloethylnitrosoureas in L1210 cells, Cancer Res. 38: 3197 (1978).Google Scholar
  2. 2.
    L. A. Zwelling„ D. Kerigan, and S. Michaels, Cytotoxicity and DNA strand breaks by 5-iminodaunorubicin in mouse leukemia L1210 cells: comparison with adriamycin and 4’-(9-acridininylamino)methanesulfon-m-anisidide Cancer Res. 42: 2687 (1982).Google Scholar
  3. 3.
    Y. Pommier, K.W. Kohn, R.E. Schwartz, and L.A. Zwelling, Formation and rejoining od deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents, Biochemistry 23: 3194 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    M. D’Incalci, J.M. Covey, D.S. Zhaharto, and K.W. Kohn, DNA alkalilabile sites induced by 5-aza-2’deoxycytidine in mouse leukemia L1210 cells, Cancer Res. 45: 3197 (1985).Google Scholar
  5. 5.
    J. E. Cleaver, Methods Cancer Res. 11: 123 (1975).Google Scholar
  6. 6.
    K. W. Kohn, DNA as a target in cancer chemotherapy: measurement of macromolecular damage produced in mammalian cells by anticancer agents and carcinogens, Methods Cancer Res. 16: 291 (1979).Google Scholar
  7. 7.
    S. Parodi, R.A. Mulivor, J.T. Martin, C. Nicolini, D.S.R. Sarma, and E. Farber, Alkaline lysis of mammalian cells for sedimentation analysis of nuclear DNA. Conformation of released DNA as monitored by physical, electron microscopic and enzymological techniques, Biochim. Biophys. Acta 407: 174 (1975).Google Scholar
  8. 8.
    H. Noll, Characterization of macromolecules by constant velocity, Nature 215: 360 (1967).PubMedCrossRefGoogle Scholar
  9. 9.
    C. W. Dingman, A convenient program for the rapid calculation of sedimentation coefficients in linear salt or sucrose gradients, Anal. Biochem. 49: 124 (1972).Google Scholar
  10. 10.
    G. P. Van Der Sham, J.B.T. Aten, and J. Blok, Determination of molecular weight distributions of DNA by means of sedimentation in a sucrose gradient, Anal. Biochem. 32: 14 (1969).Google Scholar
  11. 11.
    B. Rydberg, The rate of strand separation in alkali of DNA irradiated mammalian cells, Radiat. Res. 61: 274 (1975).Google Scholar
  12. 12.
    S. Parodi, P. Carlo, A. Martelli, M. Taningher, R. Finollo, M. Pala, and W. Giaretti, A circular crucible oscillating viscometer. Detection of DNA damage induced in vivo by exceedingly small doses of dimethylnitrosamine, J. Mol. Biol. 147: 501 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Crine, and W.G. Verly, Determination of single-strand breaks in DNA using neutral sucrose gradients, Anal. Biochem. 75: 583 (1976).Google Scholar
  14. 14.
    P. R. Cook, and I. A. Brazell, Conformational constraint in nuclear DNA, Journal Cell Science 22: 287 (1976).Google Scholar
  15. 15.
    P. R. Cook, and I.A. Brazell, Spectrofluorometric measurement of the binding of ethidium to the superhelical DNA from cell nuclei, Eur. J. Biochem. 84: 465 (1978).Google Scholar
  16. 16.
    B. D. Nelkin, D.M. Pardoll, and B. Vogelstein, Localization of SV40 genes within supercoiled loop domains, Nucleic Acid Res. 8: 5623 (1980).CrossRefGoogle Scholar
  17. 17.
    C. Benyajati, and A. Worcel, Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster, Cell 3: 393 (1976).CrossRefGoogle Scholar
  18. 18.
    P. R. Cook, and I.A. Brazell, Supercoils in human DNA, J. Cell Sci. 19: 261 (1975).PubMedGoogle Scholar
  19. 19.
    J. M. Levin, E. Jost, and P.R. Cook, The dissociation of nuclear proteins from superhelical DNA, J. Cell Sci. 29: 103 (1978).PubMedGoogle Scholar
  20. 20.
    J. S. Lebkowski, and U. K. Laemmli, Non-histone proteins and long-range organization of HeLa interphase DNA, J. Mol. Biol. 156: 325 (1982).Google Scholar
  21. 21.
    P. F. Davison, The rate of strand separation in alkali-treated DNA, J. Mol. Biol. 22: 97 (1966).CrossRefGoogle Scholar
  22. 22.
    J. Ahnström, and K. Erixon, Radiation-induced strand breakage in DNA from mammalian cell. Strand separation in alkaline solution, Int. J. Radiat. Biol. 23: 285 (1973).CrossRefGoogle Scholar
  23. 23.
    G. M. Jolley, and M.G. Ormerod, The incomplete separation of complementary strands of high molecular weight DNA in alkali, Biochim. Biophys. Acta 353: 200, (1974).Google Scholar
  24. 24.
    H. C. Birnboim, and J. J. Jevcak,Fluorometric method for rapid determination of DNA strand breaks in human white blood cells produced by low doses of radiation-, Cancer Res. 41: 1889 (1981).Google Scholar
  25. 25.
    V. Gallina, R. Malvano, and M. Omini, A new kind of oscillating crucible viscometer, Rev. Sci. Instrum. 42: 1607 (1971).CrossRefGoogle Scholar
  26. 26.
    K. W. Kohn, DNA damage in mammalian cells, Bioscience 31: 593 (1981).CrossRefGoogle Scholar
  27. 27.
    K. W. Kohn, Biological aspects of DNA damage by crosslinking agents, in: “Molecular aspects of anti-cancer drug action”, S. Neidle, and M.S. Waring, eds., MacMillian, London (1983).Google Scholar
  28. 28.
    K. W. Kohn, DNA filter elution methods in anticancer drug development, in: “Concepts, clinical, developments, and therapeutic advances in cancer chemotherapy”, F.M. Muggia, ed., Martinus Nijoff Publishers, Boston (1987).Google Scholar
  29. 29.
    S. Parodi, M. Taningher, L. Santi, M. Cavanna, L. Sciabà, A. Maura, and G. Brambilla, A practical procedure for testing DNA damage in vivo, proposed for a pre-screening of chemical carcinogens, Mutat. Res. 54: 39 (1978).Google Scholar
  30. 30.
    K. W. Kohn, L. C. Erickson, R.A.G. Ewig, and C. Friedman, Fractonation of DNA from mammalian cells by alkaline elution, Biochem. 15: 4629 (1976).CrossRefGoogle Scholar
  31. 31.
    M. O. Bradley, and K. W. Kohn, X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution, Nucleic. Acids Res. 7: 793 (1979).Google Scholar
  32. 32.
    K. W. Kohn, and R.A. Ewig, DNA-protein crosslinking by transplatinum (II) diamminedichloride in mammalian cells, a new method of analysis. Biochim. Biophys. Acta 519: 23 (1979).Google Scholar
  33. 33.
    W. E. Ross, D.L. Glaubiger, and K.W. Kohn, Protein-associated DNA breaks in cells treated with adryamicin and ellipticine, Biochim. Biophys. Acta 519: 25 (1978).Google Scholar
  34. 34.
    W. E. Ross, D. Glaubiger, and K.W. Kohn, Qualitative and quantitative aspects of intercalator-induced DNA strand breaks, Biochim. Biophys. Acta 562: 41 (1979).Google Scholar
  35. 35.
    J. Filipski, J. Yin, and K.W. Kohn, Reconstitution of intercalator-induced DNA scission by an active component from nuclear extracts, Biochim. Biophys. Acta 741: 116 (1983).Google Scholar
  36. 36.
    G. L. Chen, L. Yang, T.C. Rowe, B.D. Halligan, K.M. Tewey, and L.F. Liu, Nonintercalative antitumor drugs interfere with the breakage reunion reaction of mammalian DNA Topoisomerase II, J. Biol. Chem. 259: 13560 (1984).Google Scholar
  37. 37.
    J. Minford, Y. Pommier, J. Filipski, K.W. Kohn, D. Kerrigan, M. Mattern, S. Michaels, R. Schwartz, and L.A. Zwelling, Isolation of intercalator-dependent-protein-linked DNA strand cleavage activity from cell nuclei and identification as Topoisomerase II, Biochem. 25: 9 (1986).CrossRefGoogle Scholar
  38. 38.
    A. J. Wozniak, and W.E. Ross, DNA damage as a basis for 4’-demethylepipodophyllotoxin•-9-(4,6–0-ethylidene- -D-glucopyranoside) (etoposide) citotoxicity, Cancer Res. 43: 120 (1983).Google Scholar
  39. 39.
    M. Gellert, DNA Topoisomerases, Annu. Rev.Google Scholar
  40. 40.
    S. C. Wang, DNA Topoisomerases, Annu. Rev.Google Scholar
  41. 41.
    H. P. Vosberg, DNA Topoisomerases: enzymes that control DNA conformation, Curr. Top Microbiol. Immunol. 114: 19 (1985).PubMedCrossRefGoogle Scholar
  42. 42.
    B. S. Glisson, and W.E. Ross, DNA Topoisomerase II: a primer on the enzyme and its unique role as a multidrug target in cancer chemotherapy, Pharmac. Ther. 32: 89 (1987).Google Scholar
  43. 43.
    Y. Pommier, and K. Khon, Topoisomerase II inhibition by antitumor intercalators and demethylepipodophyllotoxins, in: “Develop. in cancer chemotherapy”, R. Glazer ed., CRC, in press.Google Scholar
  44. 44.
    S. Parodi, C. Balbi, M.L. Abelmoschi, M. Pala, P. Russo, and L. Santi, Studies on DNA damage: discordant responses of rate of DNA disentanglement (viscosimetrically evaluated) and alkaline elution rate, obtained for several compounds. Possible explanations of the discrepancies, Cell Biophys. 5: 285 (1983).Google Scholar
  45. 45.
    P. Russo, M. Taningher, M. Pala, V. Pisano, P. Pedemonte, M.T. De Angeli, S. Carlone, L. Santi, and S. Parodi, Characterization of the effects induced on DNA mouse and hamster cells by lithocholic acid, Lancer Res. 47: 2866 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Patrizia Russo
    • 1
  • Maurizio Taningher
    • 2
  • Anna Maria Orengo
    • 1
  • Silvio Parodi
    • 2
  1. 1.Istituto Nazionale per la Ricerca sul CancroGenovaItaly
  2. 2.Istituto di Oncologia Clinica e Sperimentale-Univ. di GenovaGenovaItaly

Personalised recommendations