Skip to main content

DNAase I Hypersensitive Sites of the c-Ha-ras-1 Proto-Oncogene as Targets for Rapid Benzo[a]pyrene Binding and Repair

  • Chapter
DNA Damage and Repair

Abstract

A vast amount of data has been gathered on the binding of chemical carcinogens to DNA, on the formation of carcinogen-DNA adducts and on the repair mechanisms that remove the DNA lesions and restore the continuity and integrity of the DNA. The mechanisms responsible for the formation of reactive metabolites of carcinogens capable of interacting with target macromolecules have been identified and extensively studied for many types of carcinogens. Correlations have been demonstrated between the covalent binding of many chemicals to DNA and their mutagenic and carcinogenic activity, in vivo and in isolated cells and tissues of both animal and human origin. These correlations, however, are not sufficient to explain the variety of selective carcinogenic responses induced by many different carcinogens in different tissues and cell types. Furthermore, carcinogens bind to a vast number of cells in a target tissue, whereas the origin of a neoplastic cell population, growing into a tumor, is often traceable to a single cell. The role of many cofactors that modulate the carcinogenic response has been progressively better understood and multifactorial models for the process of carcinogenesis are now becoming more generally accepted. The interplay of the effects of different carcinogens, cofactors and host factors has been recognized in human and experimental carcinogenesis studies. For most of the known chemical carcinogens, the critical mechanism of action is thought to be the induction of specific DNA lesions. These may occur through carcinogen binding to nucleotides, through faulty DNA replication on a damaged template, and possibly through errors of repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Weintraub and M. Groudine, Chromosomal subunits in active genes have an altered conformation, Science 193: 848–856 (1976).

    CAS  Google Scholar 

  2. S. C. R. Elgin, DNAase I-hypersensitive sites of chromatin, Cell 27: 413–415 (1981).

    Google Scholar 

  3. E. H. Chang, M. A. Gonda, R.W. Ellis, E. M. Scolnick and D. R. Lowy, Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses, Proc. Natl. Acad. Sci. USA 79: 4848–4852, 1982.

    Google Scholar 

  4. M. Ruta, R. Wolford, R. Dhar, D. Defeo-Jones, R. W. Ellis and E. M. Scolnick, Nucleotide sequence of the two rat cellular rases genes, Mol. Cell. Biol., 6: 1706–1710, 1986.

    CAS  Google Scholar 

  5. J. Miyoshi, M. Kagimoto, E. Soeda and Y. Sakaki, The human c-Ha-ras2 is a processed pseudogene inactivated by numerous base substitutions, Nucleic Acids Res. 12: 1821–1828, 1984

    Article  PubMed  CAS  Google Scholar 

  6. D. J. Capon, E. Y. Chen, A. D. Levinson, P. H. Seeburg and D. V. Goeddel, Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue, Nature 302: 33–37 (1983).

    CAS  Google Scholar 

  7. W. W. Colby, J. B. Cohen, D. Yu and A. D. Levinson, Sequences 3’ of the human c-Ha-rasl gene positively regulate its expression and transformation potential, in: Gene Amplification and Analysis, Vol. 4, Oncogenes”, T. S. Papas and G. F. Vande Woude, eds, Elsevier, New York (1986), pp. 39–52.

    Google Scholar 

  8. J. Jordano and M. Perucho, Chromatin structure of the promoter region of the human c-K-ras gene, Nucleic Acids Res. 14: 7361–7378 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. J. E. Arrand and A. M. Murray, Benzpyrene groups bind preferentially to the DNA of active chromatin in human lung cells, Nucleic Acids Res. 10: 1547–1555 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. K. F.Muench, R. P. Misra and M. Z. Humayun, Sequence specificity in aflatoxin B1-DNA interactions, Proc. Natl. Acad. Sci. USA 80: 6–10 (1983).

    Google Scholar 

  11. R. J. Wilkins, Sequence specificities inthe interactions of chemicals and radiations with DNA, Mol. Cell. Biochem. 64: 111–126 (1984).

    Google Scholar 

  12. R. C. Gupta, N. R. Dighe, K. Randerath and H. C. Smith, Distribution of initial and persistent 2-acetylaminofluorene-induced DNA adducts within DNA loops, Proc. Natl. Acad. Sci. USA 82: 6605–6608 (1985).

    Google Scholar 

  13. V. A. Bohr, C. A. Smith, D. S. Okumoto and P. C. Hanawalt, DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell 40: 359–369 (1985).

    CAS  Google Scholar 

  14. H. D. Madhani, V. A. Bohr and P. C. Hanawalt, Differential DNA repair in transcriptionally active and inactive proto-oncogenes: c-abl and c-mos, Cell, 45: 417–423 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lerman, M.I., Norman, R.L., Stevens, L., Stinson, S.F., Saffiotti, U. (1989). DNAase I Hypersensitive Sites of the c-Ha-ras-1 Proto-Oncogene as Targets for Rapid Benzo[a]pyrene Binding and Repair. In: Castellani, A. (eds) DNA Damage and Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5016-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5016-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5018-8

  • Online ISBN: 978-1-4757-5016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics