Skip to main content

Repair of Secondary Lesions Arising in DNA after Treatment with Alkylating Agents

  • Chapter
DNA Damage and Repair

Abstract

Treatment of cells with alkylating agents results in DNA modification. The reaction products are alkylpurines, phosphotriesters and some minor products such as alkylpyrimidines. Some of them are repaired by alkyl DNA transferase while others are repaired by DNA glycosylases which generate as products the free alkylated base and an apurinic site (AP-site). This is a secondary lesion which is harmful to the cell and is actively repaired. Alkylation of the N7 of guanine labilizes i) the glycosidic bond yielding an AP-site and ii) the imidazole ring leading to the corresponding formamidopyrimidine, another secondary lesion. We review the biological implications of AP-sites and the formamidopyrimidine lesion which may form following alkylation of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. Lawley, Methylation of DNA by carcinogens: Some applications of chemical analytical methods. In ‘Screening test in chemical carcinogenesis“, IARC, Scientific publications, n° 12:181–208 (1976).

    Google Scholar 

  2. B. Singer and D. Grunberger, in: Molecular Biology of Mutagens and Carcinogens. Plenum Press. NY 143–199 (1983).

    Book  Google Scholar 

  3. S. Boiteux, O, Huisman and J. Laval, III-methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli, EMBO J. 3: 2569–2573 (1984).

    PubMed  CAS  Google Scholar 

  4. P. Karran, T. Lindahl, G. Ofsteng, B. Evensen and E. Seeberg, Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase, J. Mol. Biol. 140: 101–127 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. A. Loveless, Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature 223: 206–207 (1969).

    Article  PubMed  CAS  Google Scholar 

  6. Laaval and F. Laval, Enzymology of DNA repair in: Molecular and Cellular aspects of carcinogen screening tests, Ì ARC Scientific publications, 27:55–73 (1980).

    Google Scholar 

  7. I. Teo, B. Sedgwick, M.W. Kilpatrick, T.V. McCarthy and T. Lindahl, The intracellular signal for induction of resistance to alkylating agents in E. coli, Cell 45: 315–324 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. J.A. Haines, C.B. Ree and L. Todd, Methylation of guanosine and related compounds with diazomethane, J. Chem. Soc., 5281 (1962).

    Google Scholar 

  9. N.D. Clarke, M. Kvaal and E. Seeberg, Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylase I and II, Molec. Gen. Genet. 197: 368–372 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. S. Riazuddin and T. Lindahl, Properties of 3-methyladenine-DNA glycosylase from Escherichia coli, Biochemistry 17: 2110–2118 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. S. Bjelland and E. Seeberg, Purification and characterization of 3methyladenine DNA glycosylase I from Escherichia coli, Nucl. Acid. Res. 7: 2787–2801 (1987).

    Article  Google Scholar 

  12. L. Thomas, C.H. Yang and D.A. Goldthwait, Two DNA glycosylases in Escherichia coli which release primarily 3-methyladenine, Biochemistry 21: 1162–1169 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. J. Pierre and J. Laval, Cloning of Micrococcus luteus 3-methyladenineDNA glycosylase in Escherichia coli, Gene 43: 139–146 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. R. Male, D. Helland and K. Kleppe, FiRTication and characterization of 3-methyladenine-DNA glycosylase from calf thymus, J. Biol. Chem. 260: 1623–1629 (1985).

    PubMed  CAS  Google Scholar 

  15. P.E. Gallagher and T.P. Brent, Further purification and characterization of human 3-methyladenine-DNA glycosylase. Evidence for broad specificity, Biochem. Biophys. Acta 782: 394–401 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. P.E. Gallagher and T.P. Brent, Partial purification of a human 3methyladenine-DNA glycosylase from human placenta, Biochemistry 21: 6404–6409 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Nakabeppu, H. Kondo and M. Sekiguchi, Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II, J. Biol. Chem. 259: 13723–13729.

    Google Scholar 

  18. R. Shapiro, Damage to DNA caused by hydrolysis, in: Chromosome Damage and Repair, E. Seeberg and K. Kleppe, ed., Plenum Press New York and London, pp: 3–18 (1981).

    Google Scholar 

  19. S.G. Rogers and B. Weiss, Exonuclease III of Escherichia coli K-12, and AP Endonuclease, Methods in Enzymology 65: 201–211 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. R.P. Cunningham, S.M. Saporito, S.G. Spitzer and B. Weiss, Endonuclease IV (nfo) mutant of Escherichia coli, J. Bact. 168: 1120–1127 (1986).

    PubMed  CAS  Google Scholar 

  21. R.P. Cunningham and B. Weiss, Endonuclease III (nth) mutants of Escherichia coli, Proc. Natl. Acad. Sci. USA 82: 474–477 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. V. Bailly and W.G. Verly, Escherichia coli endonuclease III is not an endonuclease but a 13-elimination catalyst, Biochem. J. 242: 565–572.

    Google Scholar 

  23. P.R. Armei and S.S. Wallace, Apurinic endonucleases from Saccharomyces cerevisiae, Nucl. Acids Res. 5: 3347–3356 (1978).

    Article  Google Scholar 

  24. J. Svachulova, J. Satava and J. Veliminsky, A Barley Endonuclease specific for apurinic DNA, Eur. J. Biochem. 87: 215–220 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. L. Thibodeau and W.G. Verly, Purification and properties of a plant Endonuclease specific for apurinic sites, J. Biol. Chem. 252: 3304–3309 (1977).

    PubMed  CAS  Google Scholar 

  26. C.M. Kane and S. Linn, Purification and characterization of an Apurinic/Apyrimidinic Endonuclease from HeLa cells, J. Biol. Chem. 256: 3405–3415 (1981).

    PubMed  CAS  Google Scholar 

  27. P.D. Lawley and D.J. Orr, Specific excision of methylation products from DNA of Escherichia coli treated with N-methyl-N’-nitro-N-nitrosoguanidine, Chem. Biol. Interact. 2: 154–157 (1970).

    Article  PubMed  CAS  Google Scholar 

  28. S. Boiteux, J. Belleney, B.P. Roques and J. Laval, Two rotameric forms of open ring 7-methylguanine are present in alkylated polynucleotides, Nucl. Acids. Res. 12: 5429–5439.

    Google Scholar 

  29. S. Boiteux and J. Laval, Imidazole open ring 7-methylguanine: An inhibitor of DNA synthesis, Biochem. Biophys. Res. Commun. 110: 552–558 (1985).

    Article  Google Scholar 

  30. C.J. Chetsanga and T. Lindahl, Release of 7-methylguanine residues whose imidazole ring have been opened from damaged DNA, by a DNAglycosylase from E. coli, Nucl. Acids Res. 6: 3673–3683 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. S. Boiteux, T.R. O’Connor and J. Laval, Formamidopyrimidine-DNA glycosylase of Escherichia coli: Cloning and sequencing of the fpg structural gene and overproduction of the protein, EMBO J. 6: 3177–3183 (1987).

    PubMed  CAS  Google Scholar 

  32. B. Demple, A. Johnson and D. Fung, Exonuclease III and endonuclease IV remove 3’ blocks from DNA synthesis primers in H202-damaged Escherichia coli, Proc. Natl. Acad. Sci. USA. 13: 7731–7735 (1986).

    Article  Google Scholar 

  33. S. Boiteux and J. Laval, Coding properties of Poly(deoxycytidilic acid) templates containing uracil or apyrimidinic sites: In vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes, Biochemistry 21: 6746–6751 (1982).

    Article  PubMed  CAS  Google Scholar 

  34. L.A. Loeb, Apurinic sites as mutagenic intermediates, Cell 40: 483–484 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. R.M. Shaaper, B.W. Glickman, L.A. Loeb, Role of depurination in muta-genesis by chemical carcinogens, Cancer Res. 42: 3480–3485 (1982).

    Google Scholar 

  36. A. Gentil, A. Margot and A. Sarasin, Apurinic sites cause mutations in simian virus 40, Mut. Res. 129: 141–147 (1984).

    Article  CAS  Google Scholar 

  37. N. Müller and G. Eisenbrand, The influence of N7-substituents on the stability of N7-alkylated guanosines, Chem. Biol. Interact. 53: 173–181 (1985).

    Article  PubMed  Google Scholar 

  38. T.R. Irvin and G.N. Wogan, Quantitation of aflatoxin B, adduction within the ribosomal RNA gene sequences of rat liver DNA, Proc. Natl. Acad. Sci. USA 81: 664–668 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. E. Kriek and J.G. Westra, Structural identification of the pyrimidine derivatives formed from N-(deoxyguanosin-8-y1)-2-aminofluorene in aqueous solution at alkaline pH, Carcinogenesis 1: 459–468 (1980).

    Article  PubMed  CAS  Google Scholar 

  40. C.J. Chetsanga, G. Polidori and M. Mainwaring, Analysis and excision of phosphoramide mustard-deoxyguanosine adducts in DNA, Cancer Res. 42: 2616–2621 (1982).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laval, J., O’Connor, T.R., Boiteux, S. (1989). Repair of Secondary Lesions Arising in DNA after Treatment with Alkylating Agents. In: Castellani, A. (eds) DNA Damage and Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5016-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5016-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5018-8

  • Online ISBN: 978-1-4757-5016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics