Mechanisms of Alkylating Agent Induced Cytotoxicity in E.coli and Mammalian Cells

  • J. Hall
  • P. Karran
  • H. Kataoka
  • P. Macpherson
  • C. Stephenson


The alkylating agents cause cell death and mutation via direct reaction with DNA. Due largely to the availability of mutant strains of different sensitivities, and the extent to which the reaction products of alkylating agents have been studied, the mechanisms of cell killing and mutagenesis by these compounds in E.coli are known in some detail. As a corollary, the cell’s protective mechanisms against this kind of DNA damage have also been evaluated. In contrast, our knowledge of the processes of cell killing and mutation in mammalian cells by these agents has lagged somewhat behind. This is principally due to the absence of well-characterized mutant mammalian cell strains. However, evidence is now accumulating to indicate that the biological effects of particular DNA damages may be different in E.coli and mammalian cells. In this short paper, we will review the mechanisms which protect E.coli against mutation and cell death following exposure to alkylating agents and contrast these with more recent data obtained from mammalian cells. (Since the biological effects of the alkylating agents which add bulky groups onto DNA can be alleviated by the UV damage repair system, we will concentrate on the effects of methylation damage for which specific DNA repair pathways have evolved).


Alkylating Agent Methyl Transferase Chinese Hamster Ovary Cell Line Repair Function Methylating Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riazuddin, S. and Lindahl, T. (1978) Biochemistry 17, 2110–2118.PubMedCrossRefGoogle Scholar
  2. 2.
    Karran, P., Lindahl, T., Ofsteng, I., Evensen, G. and Seeberg, E. (1980) J. Mol. Biol. 140, 101–127.Google Scholar
  3. 3.
    Samson, L. and Cairns, J. (1977) Nature 267, 281–283.PubMedCrossRefGoogle Scholar
  4. 4.
    Teo, I., Sedgwick, B., Demple, B., Li, B. and Lindahl, T. (1984) EMBO J. 3, 2151–2157.PubMedGoogle Scholar
  5. 5.
    Loechler, E.L., Green, C.L. and Essigmann, J. (1984) Proc. Natl. Acad. Sci. USA 81, 6271–6275.Google Scholar
  6. 6.
    Hill-Perkins, M., Jones, M.D. and Karran, P. (1986) Mutat. Res. 162, 153–163.PubMedCrossRefGoogle Scholar
  7. 7.
    Bhanot, O.S. and Ray, A. (1986) Proc. Natl. Acad. Sci. USA 83, 73487352.Google Scholar
  8. 8.
    McCarthy, T.V. and Lindahl, T. (1985) Nucleic Acids Res. 13, 2683–2698.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinfeld, M., Drake, A.F., Saunders, J.K. and Paterson, M.C. (1985) Nucleic Acids Res. 13, 7067–7077.PubMedCrossRefGoogle Scholar
  10. 10.
    Teo, I., Sedgwick, B., Kilpatrick, M.W., McCarthy, T.V. and Lindahl, T. (1986) Cell 45, 315–324.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto, Y., Katsuki, M., Sekiguchi, M. and Otsuji, N. (1978) J. Bacteriol. 135, 144–152.PubMedGoogle Scholar
  12. 12.
    McCarthy, T.V., Karran, P. and Lindahl, T. (1984) EMBO J. 3, 545–550.PubMedGoogle Scholar
  13. 13.
    Karran, P., Hjelmgren, T. and Lindahl, T. (1982) Nature 296, 770–773.PubMedCrossRefGoogle Scholar
  14. 14.
    Evensen, G. and Seeberg, E. (1982) Nature 296, 773–775.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeggo, P., Defais, M., Samson, L. and Schendel, P. (1977) Mol. Gen. Genet. 157, 1–9.Google Scholar
  16. 16.
    Sedgwick, B. (1983) Mol. Gen. Genet. 191, 466–472.Google Scholar
  17. 17.
    Day, R.S., Ziolkowski, C.H.J., Scudiero, D.A., Meyer, S.A., Lubiniecki, A.S., Girardi, A.J., Galloway, S.M. and Bynum, G.D. (1980) Nature 288, 724–727.PubMedCrossRefGoogle Scholar
  18. 18.
    Sklar, R. and Strauss, B. (1981) Nature 289, 417–420.PubMedCrossRefGoogle Scholar
  19. 19.
    Harris, A.L., Karran, P. and Lindahl, T. (1983) Cancer Res. 43, 32473252.Google Scholar
  20. 20.
    Dolan, M.E. and Pegg, A.E. (1985) Carcinogenesis 6, 1611–1614.PubMedCrossRefGoogle Scholar
  21. 21.
    Day, R.S., Babich, M.A., Yarosh, D.B. and Scudiero, D.A. (1987) J. Cell Sci. Suppl. 6, 333–353.Google Scholar
  22. 22.
    Kataoka, H., Hall, J. and Karran, P. (1986) EMBO J. 5, 3195–3200.PubMedGoogle Scholar
  23. 23.
    Brennand, J. and Margison, G.P. (1986) Proc. Natl. Acad. Sci. USA 83, 5607–5610.Google Scholar
  24. 24.
    Samson, L., Derfler, B. and Waldstein, E. (1986) Proc. Natl. Acad. Sci. USA 83, 5607–5610.Google Scholar
  25. 25.
    Ishizaki, K., Tsujimura, T., Yawata, H., Fujio, C., Nakabeppu, U., Sekiguchi, M. and Ikenaga, M. (1986) Mutat. Res. 166, 135–141.PubMedCrossRefGoogle Scholar
  26. 26.
    Sedgwick, B., Robins, P., Totty, N. and Lindahl, T. 187) J. Biol. Chem., In press.Google Scholar
  27. 27.
    Brennand, J. and Margison, G.P. (1986) Carcinogenesis 7, 2081–2084.PubMedCrossRefGoogle Scholar
  28. 28.
    Strauss, B. (1985) Cancer Surveys 4, 493–516.PubMedGoogle Scholar
  29. 29.
    Bignami, M., Aquilina, G., Zijno, A., Frosina, G., Abbondandalo, A. and Dogliotti, E. (1987) This Volume.Google Scholar
  30. 30.
    Yarosh, D., Ziolkowski, c. and Day, R. (1984) In: “Genes and Cancer”, Bishop, J., Graves, M. and Rowley, J. (eds.), A.R. Liss, Inc. N.Y. pp. 69–78.Google Scholar
  31. 31.
    Kaina, B., Van Zeeland, A., Backendorf, C., Theilmann, H.W. and Van de Putte, P. (1987) Mol. Cell Biol. 7, 2024–2030.PubMedGoogle Scholar
  32. 32.
    Roberts, J.J., Pascoe, J.M., Plant, J.E., Sturrock, J.E. and Crathorn, A.R. (1971) Chem. Biol. Interactions 3, 29–47.Google Scholar
  33. 33.
    Roberts, J.J., Pascoe, J.M., Smith, B.A.-and Crathorn, A.R. (1971) Chem. Biol. Interactions 3, 49–68.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. Hall
    • 1
  • P. Karran
    • 1
  • H. Kataoka
    • 1
  • P. Macpherson
    • 1
  • C. Stephenson
    • 1
  1. 1.Imperial Cancer Research FundClare Hall LaboratoriesPotters Bar, Herts.UK

Personalised recommendations