Twenty Five Years of DNA Repair

  • R. B. Setlow
Chapter

Abstract

This Congress and, in particular, this article is dedicated to the memory of Alexander Hollaender, a pioneer in the fields of radiation biology and the effects of radiation on nucleic acids. Hollaender died on December 6, 1986, shortly before his 88th birthday on December 19. His pioneering work led to the identification of nucleic acids as genetic material and to the existence of recovery following irradiation long before DNA was known to be important or its structure was known.

Keywords

Excision Repair Xeroderma Pigmentosum Methyl Transferase Pyrimidine Dimer Thymine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Cleaver, Defective repair replication of DNA in xeroderma pigmentosum, Nature 218: 652 (1968).CrossRefPubMedGoogle Scholar
  2. 2.
    K. H. Kraemer, M. M. Lee, and J. Scotto, DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum, Carcinogenesis 5: 511 (1984).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Hollaender and J. T. Curtis, Effects of sublethal doses of monochromatic ultraviolet radiation on bacteria in liquid suspensions, Proc. Soc. Exper. Biol. Med. 33: 61 (1935).Google Scholar
  4. 4.
    A. Hollaender and C. W. Emmons, Wavelength dependence of mutation production in the ultraviolet with special emphasis on fungi, Cold Spring Harbor Symp. Quant. Biol. 9: 179 (1941).Google Scholar
  5. 5.
    F. L. Gates, On nuclear derivatives and the lethal action of ultra violet light, Science 68: 479 (1928).CrossRefPubMedGoogle Scholar
  6. 6.
    O. T. Avery, C. M. McLoed, and M. McCarty, Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III, J. Exper. Med. 79: 137 (1944).Google Scholar
  7. 7.
    A. Kelner, Photoreactivation of UV-irradiated Escherichia coli with special reference to the dose-reduction principle and to UV-induced mutation, J. Bacteriol. 58: 511 (1949).PubMedGoogle Scholar
  8. 8.
    R. B. Roberts and E. Aldous, Recovery from ultraviolet irradiation in Escherichia coli, J. Bacteriol. 57: 363 (1949).PubMedGoogle Scholar
  9. 9.
    A. Garen and N. Zinder, Radiobiological evidence for partial genetic homology between bacteriophage and host bacteria, Virology 1: 347 (1955).CrossRefPubMedGoogle Scholar
  10. 10.
    J. M. Boyle and R. B. Setlow, Correlations between host-cell reactivation, ultraviolet reactivation and pyrimidine diner excision in the DNA of bacteriophage X, J. Mol. Biol. 51: 131 (1970).CrossRefPubMedGoogle Scholar
  11. 11.
    R. F. Hill, A radiation-sensitive mutant of Escherichia coli, Biochim. Biophys. Acta 30: 636 (1958).Google Scholar
  12. 12.
    S. A. Ellison, R. F. Feiner, and R. F. Hill, A host effect on bacteriophage survival after ultraviolet irradiation, Virology 11: 294 (1960).CrossRefPubMedGoogle Scholar
  13. 13.
    C. S. Rupert, S. H. Goodgal, and R. M. Herriott, Photoreactivation in vitro of ultraviolet inactivated Hemophilus influenzae transforming factor, J. Gen. Physiol. 41: 451 (1958).CrossRefPubMedGoogle Scholar
  14. 14.
    W. Harm, “Biological Effects of Ultraviolet Radiation,” Cambridge Univ. Press, Cambridge (1980).Google Scholar
  15. 15.
    R. Beukers and W. Berends, Isolation and identification of the irradiation product of thymine, Biochim. Biophys. Acta 41: 550 (1960).Google Scholar
  16. 16.
    A. Wacker, H. Deliweg, and D. Weinblum, Strahlenchemische Veränderung der Bakterien-Desoxyribonucleinsäure in vivo, Naturwissenschaften 47: 477 (1960).CrossRefGoogle Scholar
  17. 17.
    R. B. Setlow and W. L. Carrier, The identification of ultraviolet-induced thymine dimers in DNA by absorbance measurements, Photochem. Photobiol. 2: 49 (1963).CrossRefGoogle Scholar
  18. 18.
    R. B. Setlow and J. K. Setlow, Evidence that ultraviolet-induced thymine diners in DNA cause biological damage, Proc Natl Acad. Sci. USA 48: 1250 (1962).CrossRefGoogle Scholar
  19. 19.
    J. K. Setlow and R. B. Setlow, Nature of the photoreactivable lesion in DNA, Nature 197: 560 (1963).CrossRefGoogle Scholar
  20. 20.
    R. B. Setlow, W. L. Carrier, and F. J. Bollum, Nuclease-resistant sequences in ultraviolet-irradiated deoxyribonucleic acid, Biochim. Biophys. Acta 91: 446 (1964).Google Scholar
  21. 21.
    R. B. Setlow, P. A. Swenson, and W. L. Carrier, Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells, Science 142: 1464 (1963).CrossRefPubMedGoogle Scholar
  22. 22.
    R. B. Setlow and W. L. Carrier, The disappearance of thymine dimers from DNA: An error-correcting mechanism, Proc. Natl. Acad. Sci. USA 51: 226 (1964).CrossRefPubMedGoogle Scholar
  23. 23.
    R. P. Boyce and P. Howard-Flanders, Release of ultraviolet light-induced thymine dimers from DNA in E. coli K12, Proc. Natl. Acad. Sci. USA 51: 293 (1964).CrossRefGoogle Scholar
  24. 24.
    E. C. Friedberg, “DNA Repair,” W. H. Freeman, New York (1985).Google Scholar
  25. 25.
    D. Pettijohn and P. Hanawalt, Deoxribonucleic acid replication in bacteria following ultraviolet irradiation, Biochim. Biophys. Acta 72: 127 (1963).Google Scholar
  26. 26.
    P. C. Hanawalt and R. Haynes, Repair replication of DNA in bacteria: Irrelevance of chemical nature of base defect, Biochem. Biophys. Res. Commun. 19: 462 (1965).Google Scholar
  27. 27.
    A. Castellani, J. Jagger, and R. B. Setlow, Overlap of photoreactivation and liquid holding recovery in Escherichia coli B, Science 143: 1170 (1964).CrossRefPubMedGoogle Scholar
  28. 28.
    R. B. Setlow and W. L. Carrier, The excision of pyrimidine dimers in vivo and in vitro, in: “Replication and Recombination of Genetic Material,rW. J. Peacock and R. D. Brock, eds., Australian Academy of Sciences, Canberra (1968).Google Scholar
  29. 29.
    R. A. McGrath and R. W. Williams, Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces, Nature 212: 534 (1966).CrossRefPubMedGoogle Scholar
  30. 30.
    J. D. Regan, J. E. Trosko, and W. L. Carrier, Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro, Biophys. J. 8: 319 (1968).Google Scholar
  31. 31.
    R. B. Setlow, J. D. Regan, J. German, and W. L. Carrier, Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA, Proc. Natl. Acad. Sci. USA 64: 1035 (1968).CrossRefGoogle Scholar
  32. 32.
    R. W. Hart, R. B. Setlow, and A. D. Woodhead, Evidence that pyrimidine dimers in DNA can give rise to tumors, Proc Natl. Acad. Sci. USA 74: 5574 (1977).CrossRefGoogle Scholar
  33. 33.
    P. M. Achey, A. D. Woodhead, and R. B. Setlow, Photoreactivation of pyrimidine dimers in DNA from thyroid cells of the teleost, Poecilia formosa, Photochem. Photobiol. 29: 305 (1979).CrossRefGoogle Scholar
  34. 34.
    B. M. Sutherland, L. C. Herber, and I. E. Kochevar, Pyrimidine dimer formation and repair in human skin, Cancer Res. 40: 3181 (1980).Google Scholar
  35. 35.
    R. Goth and M. Rajewsky, Persistence of 06-ethylguanine in rat brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea, Proc. Natl. Acad. Sci. USA 71: 639 (1974).CrossRefPubMedGoogle Scholar
  36. 36.
    P. Robins and J. Cairns, Quantitation of the adaptive response to alkylating agents, Nature 280: 74 (1979).CrossRefPubMedGoogle Scholar
  37. 37.
    M. Olsson and T. Lindahl, Repair of alkylated DNA in Escherichia coli, J. Biol. Chem. 255: 10569 (1980).PubMedGoogle Scholar
  38. 38.
    P. Jeggo, M. Defais, L. Samson, and P. Schendel, An adaptive response of E. coli to low levels of alkylating agents: Comparison with previously characterized DNA repair pathways, Molec. Gen. Genet. 157: 1 (1977).Google Scholar
  39. 39.
    P. Karran, T. Hjelmgren, and T. Lindahl, Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents, Nature 296: 770 (1982).CrossRefPubMedGoogle Scholar
  40. 40.
    G. Evensen and E. Seeberg, Adaptation to alkalation resistance involves the induction of a DNA glycosylase, Nature 296: 773 (1982).CrossRefPubMedGoogle Scholar
  41. 41.
    K. S. Y. Lan and M. J. Smerdon, A nonuniform distribution of excision repair synthesis in nucleosome core DNA, Biochemistry 24: 7771 (1985).CrossRefPubMedGoogle Scholar
  42. 42.
    V. A. Bohr, D. H. Phillips, and P. C. Hanawalt, Heterogeneous DNA damage and repair in the mammalian genome, Cancer Res. 47: 6426 (1987).PubMedGoogle Scholar
  43. 43.
    J. M. Gale, K. A. Nissen, and M. J. Smerdon, UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases, Proc. Natl. Acad. Sci. USA 84: 6644 (1987).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. B. Setlow
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations