Optical Signals and Transforms

  • Leonid Yaroslavsky


Signals and signal processing methods are treated mathematically through mathematical models. The very basic model is that of a mathematical function. For instance, optical signals are regarded as functions that specify relationship between physical parameters of wave fields such as intensity, and phase and parameters of the physical space such as spatial coordinates and/or of time. Fig. 2.1.1 provides classification of signals as mathematical functions and associated terminology.


Wave Front Optical Signal Point Spread Function Fourier Spectrum Inverse Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. B. Davenport, W. L. Root, An introduction to the theory of random signals and noise, McGraw-Hill, N.Y., 1958Google Scholar
  2. 2.
    B. R. Frieden, Numerical Methods in Probability Theory and Statistics, in: Computers in Optical Research, Methods in Applications, B. R. Frieden, ed., Springer Verlag, N.Y., 1980CrossRefGoogle Scholar
  3. 3.
    A. Papoulis, Signal Analysis, McGraw-Hill, N.Y., 1977Google Scholar
  4. 4.
    J. M. Wozencraft, I. M. Jacobs, Principles of Communication Engineering, J. Wiley & Sons, N. Y., 1965Google Scholar
  5. 5.
    L.P. Yaroslaysky, The Theory of Optimal Methods for Localization of Objects in Pictures, In: Progress in Optics, Ed. E. Wolf, v. XX XII, Elsevier Science Publishers, Amsterdam, 1993Google Scholar
  6. 6.
    D. Gabor, A new microscopic principle, Nature, v. 161, 777–778, 1948ADSCrossRefGoogle Scholar
  7. 7.
    D. Gabor, Theory of Communication, Journ. Of IEE, vol. 93, 1946, pp. 429–457Google Scholar
  8. 8.
    E.N. Leith, J. Upatnieks, New techniques in wavefront reconstruction, JOSA, v. 51, 1469–1473, 1961Google Scholar
  9. 9.
    Yu. N. Denisyuk, Photographic reconstruction of the optical properties of an object in its own scattered radiation field, Dokl. Akad. Nauk SSSR, v. 1444, 1275–1279Google Scholar
  10. 10.
    J.W. Goodman, Introduction to Fourier Optics, Second edition, McGraw-Hill, 1988Google Scholar
  11. 11.
    E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1948Google Scholar
  12. 12.
    L. Mertz, Transformation in Optics, Wiley, N.Y., 1965Google Scholar
  13. 13.
    G. L. Rogers, Noncoherent Optical Processing, Wiley, N.Y., 1977Google Scholar
  14. 14.
    A. Lohmann, J. Opt. Soc. Am., vol. 55, 1555–1556, 1965CrossRefGoogle Scholar
  15. 15.
    A.S. Marathay, J. Opt. Soc. Am., vol. 4, 1861–1868Google Scholar
  16. 16.
    R. V. L. Hartley, “A more symmetrical Fourier analysis applied to transmission problems,” Proc. IRE, v. 30, 144–150 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    R. Bracewell, Two-dimensional Imaging, Prentice Hall, 1995Google Scholar
  18. 18.
    J. Bertrand, P. Bertrand, J.-Ph. Ovarlez, The Mellin Transform, in: The Transforms and Applications Handbook, Ed. A.D. Poularikas, CRC Press, 1966Google Scholar
  19. 19.
    Janke, Emde, Loesh, Tafeln Hoeherer Functionen, 6 Aufgabe, B. G. Teubner Verlaggesellschaft, Stuttgart, 1960 ((see also http://functions.wolframcom)
  20. 20.
    P. Baues, Optoelectronics, v. 1, 37 (1969)Google Scholar
  21. 21.
    S. A. Collins, J. Opt. Soc. Am., vol. 60, p. 1168 (1970)CrossRefGoogle Scholar
  22. 22.
    S. Abe, J.T. Sheridan, Opt. Commun., vol. 113, p. 385 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    V. Namias, The fractional order Foutier transform and its applications in quantum mechanics, J. Inst. Maths. Applies., v. 25, pp. 241–265, 1980MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Lohmann, Fourier curious, in: International trends in Optics, vol. 2, ICO series, J. C, Dainty, ed., 1994Google Scholar
  25. 25.
    A. Lohmann, Image rotation, Wigner rotation and the fractional Fourier transform, J. Opt. Soc. Am., vol. A10, pp. 2181–2186 (1993)Google Scholar
  26. 26.
    P. Pellat-Finet, G. Bonnet, Fractional order Fourier transform and Fourier optics, Opt. Comm., 111, 141 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier Transform, with application in Optics and Signal Processing, Wiley, N. Y., 2000Google Scholar
  28. 28.
    CRC Handbook of Mathematical Sciences, 6th Edition, W. H. Beyer, Editor, CRC Press, Roca Baton, 1978Google Scholar
  29. 29.
    H. Barrett, The Radon Transform and its Applications, In: Progress in Optics, ed. By E. Wolf, Elsevier, Amsterdam, vol. 21, pp. 219–286, 1984,.Google Scholar
  30. 30.
    S. R. Deans, Radon and Abel Transforms, in: The Transforms and Applications Handbook, Ed. A.D. Poularikas, CRC Press, 1966Google Scholar
  31. 31.
    Y. Meyer, Wavelets: Algorithms and Applications, SIAM, 1993Google Scholar
  32. 32.
    S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., PAMI-31, pp. 674–693, 1989Google Scholar
  33. 33.
    S. Mallat, A Wavelet Tour of Signal Processing, 2nd edition, Academic Press, 1999Google Scholar
  34. 34.
    M. Vetterli, J. Kovacevic, Wavelets and subband coding, Prentice Hall, Englewood Cliffs, N.J., 1995zbMATHGoogle Scholar
  35. 35.
    A. Haar, Zur theorie der orthogonalen funktionensysteme, Math. Annal., Vol. 69,pp. 331–371, 1910MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    A. Papoulis, Probability, Random Variables and Stochastic Processes, McGrow-Hill, N.Y., 1984zbMATHGoogle Scholar
  37. 37.
    J.W. Goodman. Statistical Properties of Laser Speckle Patterns, In: Laser Speckle and related Phenomena, J. C. Dainty, Ed., Springer Verlag, Berlin, 1975Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Leonid Yaroslavsky
    • 1
  1. 1.Tel Aviv UniversityIsrael

Personalised recommendations