Scaling Laws: Microscopic and Macroscopic Behavior

  • Raffaele Esposito


The relation between microscopic and macroscopic descriptions of many-particle systems is discussed in terms of scaling laws, following the Boltzmann original ideas. Models where a complete mathematical treatment is possible are outlined.


Transport Coefficient Hilbert Series Macroscopic Behavior Phase Point Macroscopic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hilbert D., Mathematical Problems,Göttinger Nachroichten 1900, 253–297.Google Scholar
  2. [2]
    Boltzmann L., Über die Eigenshaften monzyklischer und anderer damit verwandter Systeme, in: “Wissenshaftliche Abhandlungen”, F.P. Hasenörl ed., vol. III, Chelsea, New York 1968.Google Scholar
  3. [3]
    Morrey C.B., On the derivation of the equations of hydrodynamics from statistical mechanics,Commun. Pure Applicata. Math. 8 (1955), 279–326.Google Scholar
  4. [4]
    Esposito R., Marra R., On the derivation of the incompressible Navier-Stokes equation for Hamiltonian particle systems, J. Stat. Phys. 74 (1993), 981–1004.CrossRefGoogle Scholar
  5. [5]
    Olla S., Varadhan S.R.S., Yau H.T., Hydrodynamical limit for a Hamiltonian system with weak noise, Commun. Math. Phys. 155 (1993), 523.CrossRefGoogle Scholar
  6. [6]
    Lanford O.E., Time Evolution of Large Classical systems,in: “Lecture Notes in Physics” 38 J. Moser ed., Springer, Berlin, Heidelberg, 1–111.Google Scholar
  7. [7]
    Hilbert D., Begründung der kinetischen Gastheorie,Mathematische Annalen 72 (1916/17), 331–407.Google Scholar
  8. [8]
    Caflisch R.E., The fluid dynamical limit of the nonlinear Boltzmann equation,Commun. Pure and Applicata. Math. 33 (1980), 651–666.Google Scholar
  9. [9]
    De Masi A., Esposito R., Lebowitz J.L., Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation, Commun. Pure and Applicata. Math. 42 (1989), 1189–1214.Google Scholar
  10. [10]
    Varadhan S.R.S., Nonlinear diffusion limit for a system with nearest neighbor interactions II, in: “Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals”, K.D. Elworthy and N. Ikeda eds., Pitman Research Notes in Math. 283, J. Wiley & Sons, New York 1994, 75–128.Google Scholar
  11. [11]
    Esposito R., Marra R., Yau H.T., Navier-Stokes equations for stochastic particle systems on the lattice, Commun. Math. Phys. 182 (1996), 395–456.CrossRefGoogle Scholar
  12. [12]
    Green M.S., Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids,Jour. Chem. Phys. 22 (1954), 398–413.Google Scholar
  13. [13]
    Kubo R., Statistical-Mechanical theory of irreversible processes. I general theory and simple applications in magnetic and conduction problems,Jour. Phys. Soc. Jap. 12 (1957), 570–586.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Raffaele Esposito
    • 1
    • 2
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi dell’AquilaItaly
  2. 2.Centro di Ricerche Linceo Interdisciplinare “Beniamino Segre”Italy

Personalised recommendations