Probabilistic Aspects in George D. Birkhoff’s Work

  • Luca Dell’Aglio


The aim of the present paper is to analyse different kinds of occurrences of the concept of probability in George D. Birkhoff’s work. The occurrences refer to transversally theoretical ambits such as dynamical systems and ergodic theory, and lead directly to the discussion of some epistemological questions concerning the interpretation of physical phenomena, also in relation to the modern concept of ‘deterministic chaos’.


Ergodic Theory Ergodic Theorem Modern Concept Deterministic Chaos Probabilistic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barrow-Green J., Poincaré and the three body problem, American Mathematical Society, Providence 1997.Google Scholar
  2. [2]
    Boyarsky A., Gora P., Laws of Chaos. Invariant Measure and Dynamical Systems in One Dimension, Birkhäuser, Boston 1997.Google Scholar
  3. [3]
    Birkhoff G.D., Quelques théorèmes sur le mouvement des systèmes dynamiques, Bull. Soc. Mat. de France 40 (1912), 305–323.Google Scholar
  4. [4]
    Birkhoff G.D., The restricted problem of three bodies, Palermo Rend. 39 (1915), 265–334.CrossRefGoogle Scholar
  5. [5]
    Birkhoff G.D., Dynamical systems with two degrees of freedom, Nat. Acad. Proc. 3 (1916), 314–316.Google Scholar
  6. [6]
    Birkhoff G.D., Dynamical systems with two degrees of freedom, Trans. Amer. Mat. Soc. 18 (1917), 199–300.CrossRefGoogle Scholar
  7. [7]
    Birkhoff G.D., Surface transformations and their dynamical applications, Acta Math. 43 (1920), 1–119.CrossRefGoogle Scholar
  8. [8]
    Birkhoff G.D., Über gewisse Zentralbewengungen dynamischer Systeme, Gesell. Wisse, Göttingen 1926, 81–92.Google Scholar
  9. [9]
    Birkhoff G.D., Stabilità e periodicità nella dinamica, Period. Matem. 6 (4) (1926), 262–271.Google Scholar
  10. [10]
    Birkhoff G.D., Dynamical Systems, Amer. Math. Soc., New York 1927.Google Scholar
  11. [11]
    Birkhoff G.D., On the Periodic Motions of Dynamical Systems, Acta Mat. 50 (1927), 359–379.CrossRefGoogle Scholar
  12. [12]
    Birkhoff G.D., Proof of a recurrence theorem for strongly transitive systems, Proc. Nat. Acad. Science 17 (1931), 650–655.CrossRefGoogle Scholar
  13. [13]
    Birkhoff G.D., Proof of the ergodic theorem, Proc. Nat. Acad. Science 17 (1931), 656–660.CrossRefGoogle Scholar
  14. [14]
    Birkhoff G.D., Probability and physical systems, Bull. Amer. Math. Soc. 38 (1932), 361–379.CrossRefGoogle Scholar
  15. [15]
    Birkhoff G.D., Aesthetic Measure, Harvard University Press, Cambridge (MA) 1933.Google Scholar
  16. [16]
    Birkhoff G.D., Three public lectures on scientific subjects,Rice Institute Pamphlet 28 (1941)Google Scholar
  17. Birkhoff G.D., reprinted in Birkhoff G.D., Collected Mathematical Papers, vol. III, American Mathematical Society (1950), 755–838.Google Scholar
  18. [17]
    Birkhoff G.D., What is the ergodic theorem, Amer. Math. Mont. 49 (1942), 222–226.CrossRefGoogle Scholar
  19. [18]
    Birkhoff G.D., Collected Mathematical Works of George David Birkhoff,Providence R.I. 1950.Google Scholar
  20. [19]
    Birkhoff G.D., Koopman B.O., Recent contributions to the ergodic theory, Proc. Nat. Acad. Science 18 (1932), 279–282.CrossRefGoogle Scholar
  21. [20]
    Birkhoff G.D., Lewis C.D. JR., Stability in causal systems, Philosophy of Science 2 (1935), 304–333.CrossRefGoogle Scholar
  22. [21]
    Birkhoff G.D., Smith P.A., Structure analysis of surface transformations, Journ. de Math. 7 (1928), 345–379.Google Scholar
  23. [22]
    Carathéodory C., Über den Wiederkehrsatz von Poincaré, Berl. Ber. (1919), 580–584.Google Scholar
  24. [23]
    Cercignani C., Ludwig Boltzmann e la meccanica statistica, La goliardica pavese, Pavia 1997.Google Scholar
  25. [24]
    Devaney R.L., An Introduction to Chaotic Dynamical Systems, Addison Wesley, New York 1988.Google Scholar
  26. [25]
    Ehrenfest P., Ehrenfest T., 1911. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Encyklopädie der mathematischen Wissenschaften, vol. 4, part 32 (1911);Google Scholar
  27. Ehrenfest P., Ehrenfest T., english translation The Conceptual Foundations of the Statistical Approach in Mechanics, by Michael J. Moravcsik, Cornell University Press 1959.Google Scholar
  28. [26]
    Farquhar I.E., Ergodic Theory in Statistical Mechanics, Wiley-Interscience, New York 1964.Google Scholar
  29. [27]
    Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York-Berlin-Heidelberg 1983.Google Scholar
  30. [28]
    Khinchin A.I., Mathematical Foundations of Statistical Mechanics, Dover, New York 1949.Google Scholar
  31. [29]
    Koopman B.O., Birkhoff on Dynamical Systems, Bull. Amer. Math. Soc. 36 (1930), 162–166.CrossRefGoogle Scholar
  32. [30]
    Lasota A., Mackey M.C., Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge 1985.CrossRefGoogle Scholar
  33. [31]
    Lefschetz S., Geometric Differential Equations: Recent Past and Proximate Future, in: “Differential Equations and Dynamical Systems”, J.K. Hale and J.P. La Salle eds., Academic Press, New York 1967, 1–14.Google Scholar
  34. [32]
    Lo Bello A., On the Origin and History of Ergodic Theory, Boll. St. Sc. Mat. III (1) (1983), 37–75.Google Scholar
  35. [33]
    Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.CrossRefGoogle Scholar
  36. [34]
    Mackey G.W., Von Neumann and the early days of ergodic theory, in: “Proceedings of Symposia in Pure Mathematics” 50 (1990), 25–38Google Scholar
  37. Mackey G.W., reprinted in Mackey G.W., The Scope and the History of Commutative and Noncommutative Harmonic Analysis,American Mathematical Society (1991), 311–324.Google Scholar
  38. [35]
    Mira C., Some Historical Aspects Concerning the Theory of Dynamic Systems, in: “Dynamical systems: a renewal of mechanism. Centennial of George David Birkhoff”, S. Diner, D. Fargue and G. Lochak eds., World scientific, Singapore 1986, 250–261.Google Scholar
  39. [36]
    Morse M., George David Birkhoff and his mathematical work, Bull. Amer. Math. Soc. 52 (1946), 357–391.CrossRefGoogle Scholar
  40. [37]
    Nemytskii V.V., Stepanov V.V., Qualitative Theory of Differential Equations, Princeton University Press, Princeton 1960.Google Scholar
  41. [38]
    Von Neumann J., Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Science 18 (1932), 70–82.CrossRefGoogle Scholar
  42. [39]
    Nitecki Z., Differentiable Dynamics, The MIT Press, Cambridge (MA) 1971.Google Scholar
  43. [40]
    Percival I.C., Chaos in Hamiltonian systems,in: “Dynamical Chaos”, M.V. Berry, I.C. Percival and N.O. Weiss eds., The Royal Society, London 1987, 131–144.Google Scholar
  44. [41]
    Von Plato J., Probability in Dynamical Systems, in: “Logic, Methodology and Philosophy of Science VII”, J.E. Fenstad et al. eds., North-Holland, Amsterdam 1989, 427–443.Google Scholar
  45. [42]
    Von Plato J., Creating Modern Probability, Cambridge University Press, Cambridge 1994.CrossRefGoogle Scholar
  46. [43]
    Poincaré H., Sur les équations de la dynamique et les problème de trois corps, Acta Math. 13 (1890), 1–270.Google Scholar
  47. [44]
    Poincaré H., Calcul des probabilités, Gauthiers-Villars, Paris 1896 (revised edition 1912).Google Scholar
  48. [45]
    Poincaré H., Les méthodes nouvelles de la mécanique céleste,GauthiersVillars, Paris 1892–99.Google Scholar
  49. [46]
    Poincaré H., Science et Méthode, Flammarion, Paris 1908.Google Scholar
  50. [47]
    Sheynin O.B., Henri Poincaré’s Work on Probability, Arch. Hist. Ex. Sc. 42(2) (1991), 137–171.CrossRefGoogle Scholar
  51. [48]
    Smale S., Diffeomorphisms with Many Periodic Points, in: “Differential and Combinatorial Topology”, S.S. Cairns ed., Princeton University Press, Princeton 1965.Google Scholar
  52. [49]
    Smale S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. 73 (1967), 747–817CrossRefGoogle Scholar
  53. Smale S., reprinted in Smale S., The Mathematics of Time, Springer, New YorkHeidelberg-Berlin, (1967) 1–82.Google Scholar
  54. [50]
    Smale S., On the problem of reviving the ergodic hypotheses of Boltzmann and Birkhoff,in: “International Conference on Non-Linear Dynamics”, New York Academy of Science 1979; reprinted in Smale S., The Mathematics of Time,Springer, New York-Heidelberg-Berlin, 137–144.Google Scholar
  55. [51]
    Stewart B., Thompson M., Nonlinear Dynamics and Chaos. Geometrical Methods for Engineers and Scientists, Wiley, New York 1986.Google Scholar
  56. [52]
    Veblen O., George David Birkhoff (1884–1944),in: “Year Book of The American Philosophical Society”, 1946, 279–285; reprinted in Birkhoff G.D., Collected Mathematical Works of George David Birkhoff,1950, xv-xxi.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Luca Dell’Aglio
    • 1
  1. 1.Dipartimento di MatematicaUniversità della CalabriaArcavacata Di Rende (CS)Italy

Personalised recommendations